Programa Especializado - Biología de sistemas y biotecnología

Comienza el abr. 03

Programa Especializado - Biología de sistemas y biotecnología

Expertise for Professionals and Students in Biotechnology and Biomedical Data Sciences

Learn Methodologies in Systems Biology Including: Bioinformatics, Dynamical Modeling, Genomics, Network and Statistical Modeling, Proteomics, Omics Technologies Single Cell Research Technologies.

Sobre este Programa Especializado

Design systems-level experiments using appropriate cutting edge techniques, collect big data, and analyze and interpret small and big data sets quantitatively. The Systems Biology Specialization covers the concepts and methodologies used in systems-level analysis of biomedical systems. Successful participants will learn how to use experimental, computational and mathematical methods in systems biology and how to design practical systems-level frameworks to address questions in a variety of biomedical fields. In the final Capstone Project, students will apply the methods they learned in five courses of specialization to work on a research project.

Creada por:

courses
6 courses

Sigue el orden sugerido o elige el tuyo.

projects
Proyectos

Diseñado para ayudarte a practicar y aplicar las habilidades que aprendiste.

certificates
Certificados

Resalta tus nuevas habilidades en tu currículum o LinkedIn.

Cursos
Intermediate Specialization.
Some related experience required.
  1. CURSO 1

    Introducción a la Biología de Sistemas

    Próxima sesión: abr. 3 — jun. 19.
    Dedicación
    6-8 horas/semana
    Subtítulos
    English, Chinese (Simplified)

    Acerca del Curso

    This course will introduce the student to contemporary Systems Biology focused on mammalian cells, their constituents and their functions. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulations to understand these systems? The course will develop multiple lines of reasoning to answer the questions listed above. Two major reasoning threads are: the design, execution and interpretation of multivariable experiments that produce large data sets; quantitative reasoning, models and simulations. Examples will be discussed to demonstrate “how” cell- level functions arise and “why” mechanistic knowledge allows us to predict cellular behaviors leading to disease states and drug responses.
  2. CURSO 2

    Experimental Methods in Systems Biology

    Sesión actual: mar. 20 — may. 22.
    Dedicación
    6-8 horas/semana
    Subtítulos
    English

    Acerca del Curso

    Learn about the technologies underlying experimentation used in systems biology, with particular focus on RNA sequencing, mass spec-based proteomics, flow/mass cytometry and live-cell imaging. A key driver of the systems biology field is the technology allowing us to delve deeper and wider into how cells respond to experimental perturbations. This in turns allows us to build more detailed quantitative models of cellular function, which can give important insight into applications ranging from biotechnology to human disease. This course gives a broad overview of a variety of current experimental techniques used in modern systems biology, with focus on obtaining the quantitative data needed for computational modeling purposes in downstream analyses. We dive deeply into four technologies in particular, mRNA sequencing, mass spectrometry-based proteomics, flow/mass cytometry, and live-cell imaging. These techniques are often used in systems biology and range from genome-wide coverage to single molecule coverage, millions of cells to single cells, and single time points to frequently sampled time courses. We present not only the theoretical background upon which these technologies work, but also enter real wet lab environments to provide instruction on how these techniques are performed in practice, and how resultant data are analyzed for quality and content.
  3. CURSO 3

    Análisis de Redes en la Biología de Sistemas

    Próxima sesión: mar. 27 — jun. 12.
    Dedicación
    6-8 horas/semana
    Subtítulos
    English

    Acerca del Curso

    An introduction to data integration and statistical methods used in contemporary Systems Biology, Bioinformatics and Systems Pharmacology research. The course covers methods to process raw data from genome-wide mRNA expression studies (microarrays and RNA-seq) including data normalization, differential expression, clustering, enrichment analysis and network construction. The course contains practical tutorials for using tools and setting up pipelines, but it also covers the mathematics behind the methods applied within the tools. The course is mostly appropriate for beginning graduate students and advanced undergraduates majoring in fields such as biology, math, physics, chemistry, computer science, biomedical and electrical engineering. The course should be useful for researchers who encounter large datasets in their own research. The course presents software tools developed by the Ma’ayan Laboratory (http://icahn.mssm.edu/research/labs/maayan-laboratory) from the Icahn School of Medicine at Mount Sinai, but also other freely available data analysis and visualization tools. The ultimate aim of the course is to enable participants to utilize the methods presented in this course for analyzing their own data for their own projects. For those participants that do not work in the field, the course introduces the current research challenges faced in the field of computational systems biology.
  4. CURSO 4

    Métodos de Modelado Dinámico en la Biología de Sistemas

    Próxima sesión: abr. 3 — may. 29.
    Dedicación
    8-10 horas a la semana
    Subtítulos
    English

    Acerca del Curso

    Introducción a las técnicas de modelado dinámico utilizadas en la investigación de la Biología de Sistemas contemporánea Utilizamos una técnica a base de casos para enseñar técnicas de modelado matemático contemporáneo. El curso es apropiado para estudiantes de licenciatura avanzados o estudiantes graduados principiantes. Las lecturas proveen un conocimiento biológico de base y describen el desarrollo tanto de modelos matemáticos clásicos, como de representaciones de procesos biológicos más recientes. El curso será de utilidad para estudiantes que planeén usar técnicas experimentales en el laboratorio y quieran emplear modelos computacionales como una herramienta para profundizar su entendimiento de los experimentos. El curso es también valioso como introducción para estudiantes que planean llevar una investigación original en modelado de biología de sistemas. Este curso se enfoca en técnicas de modelado dinámico usadas en investigación de Biología del Desarrollo. Éstas técincas están basadas en mecanismos biológicos y en modelos que los simulan, de donde se generan predicciones que pueden ser probadas experimentalmente, las cuales frecuentemente proveen de nueva información sobre los procesos biológicos. Las herramientas enseñadas en este curso pueden ser agrupadas en las siguientes categorías: 1) modelos basados en ecuaciones diferenciales ordinarias, 2) modelos basados en ecuaciones diferenciales parciales, y 3) modelos estocásticos.
  5. CURSO 5

    Análisis Integrado en la Biología de Sistemas

    Próxima sesión: abr. 3 — may. 8.
    Dedicación
    6-8 horas/semana
    Subtítulos
    English

    Acerca del Curso

    This course will focus on developing integrative skills through directed reading and analysis of the current primary literature to enable the student to develop the capstone project as the overall final exam for the specialization in systems biology.
  6. CURSO 6

    Systems Biology and Biotechnology Capstone

    Próxima sesión: jul. 3 — jul. 31.
    Subtítulos
    English

    Sobre el Proyecto Final

    NOTE: In order to take this course you should have taken and complete the following courses in the Signature Track: Introduction to Systems Biology, Network Analysis in Systems Biology, Dynamical Modeling Methods for Systems Biology, Experimental Methods in SB and Integrated Analysis In Systems Biology

Creadores

  • Escuela Icahn de Medicina del Monte Sinaí

    Icahn School of Medicine at Mount Sinai, in New York City, is a leader in medical and scientific training and education, biomedical research and patient care. The Institute for Systems Biomedicine is an interdisciplinary entity that brings together faculty who are world leaders in systems biology, medicine and systems pharmacology research at Mount Sinai.

    The Icahn School of Medicine at Mount Sinai, in New York City is a leader in medical and scientific training and education, biomedical research and patient care.

  • Avi Ma’ayan, PhD

    Avi Ma’ayan, PhD

    Director, Mount Sinai Center for Bioinformatics
  • Ravi Iyengar, PhD

    Ravi Iyengar, PhD

    Dorothy H. and Lewis Rosenstiel Professor
  • Eric Sobie, PhD

    Eric Sobie, PhD

    Associate Professor
  • Susana Neves, PhD

    Susana Neves, PhD

    Assistant Professor
  • Marc Birtwistle, PhD

    Marc Birtwistle, PhD

    Assistant Professor

FAQs

More questions? Visit the Learner Help Center.