Acerca de este Curso
5,340 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 24 horas para completar

Sugerido: 7 hours/week...

Chino (tradicional)

Subtítulos: Chino (tradicional)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 24 horas para completar

Sugerido: 7 hours/week...

Chino (tradicional)

Subtítulos: Chino (tradicional)

Programa - Qué aprenderás en este curso

Semana
1
1 hora para completar

Concept learning

...
6 videos (Total 73 minutos), 2 readings, 1 quiz
6 videos
1-2 Hypotheses ,Relation between Instance Space and Hypotheses14m
1-3 The Find-S Algorithm10m
1-4 Version Space and The List-Then Eliminate Algorithm12m
1-5 The Candidate Elimination Algorithm15m
1-6 Biased and Unbiased Hypothesis Space, Futility of Bias-Free Learning12m
2 lecturas
NTU MOOC 課程問題詢問與回報機制1m
課程投影片開放下載公告2m
1 ejercicio de práctica
Week 1 Quiz10m
Semana
2
2 horas para completar

Computational Learning Theory

...
8 videos (Total 120 minutos), 1 quiz
8 videos
2-2 Setting 3, PAC Learnable10m
2-3 Exhausting the Version Space: Definition, Theorem ,Proof and some examples19m
2-4 Shatter, Dichotomy, VC dimension14m
2-5 Some examples and discussion about VC dimension14m
2-6 Upper and Lower Bounds on Sample Complexity with VC dimension, The Mistake Bound for Algorithms14m
2-7 Optimal Mistake Bound13m
2-8 The Weighted-Majority Algorithm and its Bound11m
1 ejercicio de práctica
Week 2 Quiz16m
Semana
3
2 horas para completar

Classification

...
6 videos (Total 114 minutos), 1 quiz
6 videos
3-2 Learning Decision Tree, Information19m
3-3 Generalization and Overfitting, Kai Square Pruning,Rule Post-Pruning22m
3-4 Model Evaluation: Metrics for Performance Evaluation, Methods for Model Comparison19m
3-5 Ensemble: Embedding, Bagging and Boosting13m
3-6 Support Vector Machine: Optimization, Soft Margins, and Kernel Trick21m
1 ejercicio de práctica
Week 3 Quiz24m
Semana
4
3 horas para completar

Neural Network and Deep learning

...
9 videos (Total 151 minutos), 1 quiz
9 videos
4-2 Single-Layer Network and Perceptron Learning Rule15m
4-3 Multi-Layer Perceptron, Back Propagation Learning, Decline of ANN10m
4-4 Cascade Correlation Neural Networks, Deep or Shallow Structure23m
4-5 Deep Learning: Convolutional Neural Networks17m
4-6 LeNet 5, Dropout, ReLU and the Variants, Maxout, Residual Net18m
4-7 Recurrent Networks, Long Short-Term Memory (LSTM), Neural Turing Machine, Memory-Augmented Neural Networks (MANN)15m
4-8 Autoencoder: Denoising Autoencoder, Stacked Autoencoder and Variational Autoencoder12m
4-9 Generative Adversarial Net (GAN), AE+GAN and Its Applications16m
1 ejercicio de práctica
Week 4 Quiz16m

Instructor

Avatar

于天立

副教授 (Associate Professor)
電機工程學系 (Department of Electrical Engineering)

Acerca de Universidad Nacional de Taiwán

We firmly believe that open access to learning is a powerful socioeconomic equalizer. NTU is especially delighted to join other world-class universities on Coursera and to offer quality university courses to the Chinese-speaking population. We hope to transform the rich rewards of learning from a limited commodity to an experience available to all. More courses information, the official Facebook Page: https://www.facebook.com/ntumooc2017/...

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.