Acerca de este Curso
15,828 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 14 horas para completar

Sugerido: Four weeks of study, 4-8 hours/week depending on past experience with sequential programming in Java...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Concurrency (Computer Science)Actor ModelOptimistic Concurrency ControlJava Concurrency

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 14 horas para completar

Sugerido: Four weeks of study, 4-8 hours/week depending on past experience with sequential programming in Java...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
1 horas para completar

Welcome to the Course!

Welcome to Concurrent Programming in Java! This course is designed as a three-part series and covers a theme or body of knowledge through various video lectures, demonstrations, and coding projects.

...
1 videos (Total 1 minutos), 5 readings, 1 quiz
1 videos
5 lecturas
General Course Info5m
Course Icon Legend2m
Discussion Forum Guidelines2m
Pre-Course Survey10m
Mini Project 0: Setup10m
5 horas para completar

Threads and Locks

In this module, we will learn about threads and locks, which have served as primitive building blocks for concurrent programming for over five decades. All computing platforms today include some form of support for threads and locks, and make them available for use by developers in a wide range of programming languages. We will learn how threads can be created, joined, and synchronized using structured (e.g., synchronized statements/methods) and unstructured (e.g., java.util.concurrent libraries) locks in Java. We will also learn about new classes of bugs that can arise when concurrent programs need to access shared resources. These bugs are referred to as violations of liveness/progress guarantees, and include deadlock, livelock, and starvation. We will conclude this module by studying different solutions to the classical "Dining Philosophers" problem, and use these solutions to illustrate instances of deadlock, livelock and starvation.

...
6 videos (Total 41 minutos), 6 readings, 2 quizzes
6 videos
1.4 Liveness7m
1.5 Dining Philosophers8m
Demonstration: Locking and Synchronization4m
6 lecturas
1.1 Lecture Summary5m
1.2 Lecture Summary5m
1.3 Lecture Summary5m
1.4 Lecture Summary5m
1.5 Lecture Summary5m
Mini Project 1: Locking and Synchronization10m
1 ejercicios de práctica
Module 1 Quiz30m
Semana
2
4 horas para completar

Critical Sections and Isolation

In this module, we will learn different approaches to coordinating accesses to shared resources without encountering the deadlock or livelock bugs studied earlier. Critical/isolated sections are higher-level concurrent programming constructs (relative to locks) that simplify the implementation of mutual exclusion by guaranteeing the absence of deadlocks and livelocks. Object-based isolation relaxes the constraints imposed by critical sections by allowing mutual exclusion to be specified on a per-object basis, as illustrated in the Spanning Tree example. Java's atomic variables represent an important, but restricted, case of object-based isolation that is implemented efficiently on all hardware platforms. Finally, we will learn how object-based isolation can be further relaxed with read/write access modes.

...
6 videos (Total 36 minutos), 6 readings, 2 quizzes
6 videos
2.4 Atomic Variables6m
2.5 Read, Write Isolation5m
Demonstration: Global and Object-Based Isolation3m
6 lecturas
2.1 Lecture Summary10m
2.2 Lecture Summary10m
2.3 Lecture Summary10m
2.4 Lecture Summary10m
2.5 Lecture Summary10m
Mini Project 2: Global and Object-Based Isolation10m
1 ejercicios de práctica
Module 2 Quiz33m
20 minutos para completar

Talking to Two Sigma: Using it in the Field

Join Professor Vivek Sarkar as he talks with Software Engineer, Dr. Shams Imam, at their downtown Houston, Texas office about threads, locks, deadlocks, high-level and low-level constructs, and the importance of concurrent programming.

...
2 videos (Total 10 minutos), 1 reading
Semana
3
4 horas para completar

Actors

In this module, we will learn another high-level approach to concurrent programming called the "Actor" model. A major difference between the Actor model and the Isolated Sections model is that there are no data races possible in the Actor model because it does not allow for any form of shared variables. However, as in all concurrent programming models, higher-level forms of nondeterminism are still possible in the Actor model due to an inherent asynchrony in the order in which messages may be delivered. We will study multiple examples of concurrency using the Actor model, including the classical Sieve of Eratosthenes algorithm to generate prime numbers, as well as producer-consumer patterns with both unbounded and bounded buffers.

...
6 videos (Total 29 minutos), 6 readings, 2 quizzes
6 videos
3.4 Producer-Consumer Problem4m
3.5 Bounded Buffer Problem3m
Demonstration: Sieve of Eratosthenes Using Actor Parallelism3m
6 lecturas
3.1 Lecture Summary10m
3.2 Lecture Summary10m
3.3 Lecture Summary10m
3.4 Lecture Summary10m
3.5 Lecture Summary10m
Mini Project 3: Sieve of Eratosthenes Using Actor Parallelism10m
1 ejercicios de práctica
Module 3 Quiz30m
Semana
4
4 horas para completar

Concurrent Data Structures

In this module, we will study Concurrent Data Structures, which form an essential software layer in all multithreaded programming systems. First, we will learn about Optimistic Concurrency, an important multithreaded pattern in which two threads can "optimistically" make progress on their assigned work without worrying about mutual conflicts, and only checking for conflicts before "committing" the results of their work. We will then study the widely-used Concurrent Queue data structure. Even though the APIs for using concurrent queues are very simple, their implementations using the Optimistic Concurrency model can be complex and error-prone. To that end, we will also learn the formal notion of Linearizability to better understand correctness requirements for concurrent data structures. We will then study Concurrent Hash Maps, another widely-used concurrent data structure. Finally, we discuss a concurrent algorithm for finding a Minimum Spanning Tree of an undirected graph, an algorithm that relies on the use of Concurrent Data Structures under the covers.

...
6 videos (Total 38 minutos), 7 readings, 2 quizzes
6 videos
4.4 Concurrent Hash Map5m
4.5 Concurrent Minimum Spanning Tree Algorithm7m
Demonstration: Parallelization of Boruvka's Minimum Spanning Tree Algorithm7m
7 lecturas
4.1 Lecture Summary10m
4.2 Lecture Summary10m
4.3 Lecture Summary10m
4.4 Lecture Summary10m
4.5 Lecture Summary10m
Mini Project 4: Parallelization of Boruvka's Minimum Spanning Tree Algorithm10m
Exit Survey10m
1 ejercicios de práctica
Module 4 Quiz30m
15 minutos para completar

Continue Your Journey with the Specialization "Parallel, Concurrent, and Distributed Programming in Java"

The next two videos will showcase the importance of learning about Parallel Programming and Distributed Programming in Java. Professor Vivek Sarkar will speak with industry professionals at Two Sigma about how the topics of our other two courses are utilized in the field.

...
2 videos (Total 13 minutos), 1 reading
4.5
49 revisionesChevron Right

12%

comenzó una nueva carrera después de completar estos cursos

10%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones sobre Concurrent Programming in Java

por PSSep 2nd 2017

Great course. With minimal effort you can learn about important concepts and see immediate results regarding the actual speedup you can achieve using concurrent programming.

por SMNov 12th 2017

This was a good course and covered all the topics relevant to the course. I liked the Optimistic Concurrency in week 4 - that was an area I was not exposed to before

Instructores

Avatar

Vivek Sarkar

Professor
Department of Computer Science

Acerca de Universidad Rice

Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy....

Acerca del programa especializado Parallel, Concurrent, and Distributed Programming in Java

Parallel, concurrent, and distributed programming underlies software in multiple domains, ranging from biomedical research to financial services. This specialization is intended for anyone with a basic knowledge of sequential programming in Java, who is motivated to learn how to write parallel, concurrent and distributed programs. Through a collection of three courses (which may be taken in any order or separately), you will learn foundational topics in Parallelism, Concurrency, and Distribution. These courses will prepare you for multithreaded and distributed programming for a wide range of computer platforms, from mobile devices to cloud computing servers. To see an overview video for this Specialization, click here! For an interview with two early-career software engineers on the relevance of parallel computing to their jobs, click here. Acknowledgments The instructor, Prof. Vivek Sarkar, would like to thank Dr. Max Grossman for his contributions to the mini-projects and other course material, Dr. Zoran Budimlic for his contributions to the quizzes, Dr. Max Grossman and Dr. Shams Imam for their contributions to the pedagogic PCDP library used in some of the mini-projects, and all members of the Rice Online team who contributed to the development of the course content (including Martin Calvi, Annette Howe, Seth Tyger, and Chong Zhou)....
Parallel, Concurrent, and Distributed Programming in Java

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.