Acerca de este Curso
10,124 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 21 horas para completar

Sugerido: 9 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 21 horas para completar

Sugerido: 9 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Week 1: Supervised Learning & Regression

Welcome to the second course in this specialization! This week, we will go over the syllabus, download all course materials, and get your system up and running for the course. We will also introduce the basics of supervised learning and regression.

...
5 videos (Total 46 minutos), 4 readings, 3 quizzes
5 videos
Supervised Learning: Regression9m
Regression in Python10m
Time-Series Regression8m
Autoregression6m
4 lecturas
Syllabus10m
Course Materials10m
Set Up Your System10m
Recap: Mathematical Notation10m
3 ejercicios de práctica
Review: Supervised Learning4m
Review: Regression4m
Supervised Learning & Regression10m
Semana
2
1 hora para completar

Week 2: Features

This week, we will learn what features are in a dataset and how we can work with them through cleaning, manipulation, and analysis in Jupyter notebooks.

...
4 videos (Total 29 minutos), 3 quizzes
4 videos
Features from Temporal Data8m
Feature Transformations4m
Missing Values7m
3 ejercicios de práctica
Review: Getting Features
Review: Working with Features
Features10m
Semana
3
1 hora para completar

Week 3: Classification

This week, we will learn about classification and several ways you can implement it, such as K-nearest neighbors, logistic regression, and support vector machines.

...
4 videos (Total 31 minutos), 3 quizzes
4 videos
Classification: Nearest Neighbors4m
Classification: Logistic Regression10m
Introduction to Support Vector Machines10m
3 ejercicios de práctica
Review: Classification and K-Nearest Neighbors6m
Review: Logistic Regression and Support Vector Machines5m
Classification10m
Semana
4
1 hora para completar

Week 4: Gradient Descent

This week, we will learn the importance of properly training and testing a model. We will also implement gradient descent in both Python and TensorFlow.

...
5 videos (Total 36 minutos), 3 quizzes
5 videos
Introduction to Training and Testing6m
Gradient Descent in Python8m
Gradient Descent in TensorFlow6m
Livecoding: Tensorflow7m
3 ejercicios de práctica
Review: Classification and Training4m
Review: Gradient Descent4m
More on Classification15m

Instructores

Avatar

Julian McAuley

Assistant Professor
Computer Science
Avatar

Ilkay Altintas

Chief Data Science Officer
San Diego Supercomputer Center

Acerca de Universidad de California en San Diego

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Acerca del programa especializado Python Data Products for Predictive Analytics

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.