Acerca de este Curso

251,019 vistas recientes

Resultados profesionales del estudiante

33%

comenzó una nueva carrera después de completar estos cursos

22%

consiguió un beneficio tangible en su carrera profesional gracias a este curso
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel principiante
Aprox. 15 horas para completar
Inglés (English)
Subtítulos: Inglés (English), Coreano

Habilidades que obtendrás

Statistical InferenceStatistical Hypothesis TestingR Programming

Resultados profesionales del estudiante

33%

comenzó una nueva carrera después de completar estos cursos

22%

consiguió un beneficio tangible en su carrera profesional gracias a este curso
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel principiante
Aprox. 15 horas para completar
Inglés (English)
Subtítulos: Inglés (English), Coreano

ofrecido por

Logotipo de Universidad Duke

Universidad Duke

Programa - Qué aprenderás en este curso

Calificación del contenidoThumbs Up93%(5,892 calificaciones)Info
Semana
1

Semana 1

20 minutos para completar

About the Specialization and the Course

20 minutos para completar
2 lecturas
2 lecturas
About Statistics with R Specialization10m
More about Inferential Statistics10m
3 horas para completar

Central Limit Theorem and Confidence Interval

3 horas para completar
7 videos (Total 65 minutos), 6 lecturas, 3 cuestionarios
7 videos
Sampling Variability and CLT20m
CLT (for the mean) examples10m
Confidence Interval (for a mean)11m
Accuracy vs. Precision7m
Required Sample Size for ME4m
CI (for the mean) examples5m
6 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Week 1 Suggested Readings and Practice Exercises10m
About Lab Choices10m
Week 1 Lab Instructions (RStudio)10m
Week 1 Lab Instructions (RStudio Cloud)10m
3 ejercicios de práctica
Week 1 Practice Quiz12m
Week 1 Quiz14m
Week 1 Lab12m
Semana
2

Semana 2

2 horas para completar

Inference and Significance

2 horas para completar
7 videos (Total 59 minutos), 5 lecturas, 3 cuestionarios
7 videos
Hypothesis Testing (for a mean)14m
HT (for the mean) examples9m
Inference for Other Estimators10m
Decision Errors8m
Significance vs. Confidence Level6m
Statistical vs. Practical Significance7m
5 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Week 2 Suggested Readings and Practice Exercises10m
Week 2 Lab Instructions (RStudio)10m
Week 2 Lab Instructions (RStudio Cloud)10m
3 ejercicios de práctica
Week 2 Practice Quiz10m
Week 2 Quiz16m
Week 2 Lab12m
Semana
3

Semana 3

3 horas para completar

Inference for Comparing Means

3 horas para completar
11 videos (Total 84 minutos), 5 lecturas, 3 cuestionarios
11 videos
t-distribution7m
Inference for a mean9m
Inference for comparing two independent means8m
Inference for comparing two paired means9m
Power11m
Comparing more than two means6m
ANOVA9m
Conditions for ANOVA2m
Multiple comparisons6m
Bootstrapping8m
5 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Week 3 Suggested Readings and Practice Exercises10m
Week 3 Lab Instructions (RStudio)10m
Week 3 Lab Instructions (RStudio Cloud)10m
3 ejercicios de práctica
Week 3 Practice Quiz16m
Week 3 Quiz28m
Week 3 Lab14m
Semana
4

Semana 4

4 horas para completar

Inference for Proportions

4 horas para completar
11 videos (Total 118 minutos), 5 lecturas, 3 cuestionarios
11 videos
Sampling Variability and CLT for Proportions15m
Confidence Interval for a Proportion9m
Hypothesis Test for a Proportion9m
Estimating the Difference Between Two Proportions17m
Hypothesis Test for Comparing Two Proportions13m
Small Sample Proportions10m
Examples4m
Comparing Two Small Sample Proportions5m
Chi-Square GOF Test14m
The Chi-Square Independence Test11m
5 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Week 4 Suggested Readings and Practice Exercises10m
Week 4 Lab Instructions (RStudio)10m
Week 4 Lab Instructions (RStudio Cloud)10m
3 ejercicios de práctica
Week 4 Practice Quiz18m
Week 4 Quiz24m
Week 4 Lab26m

Revisiones

Principales revisiones sobre INFERENTIAL STATISTICS

Ver todos los comentarios

Acerca de Programa especializado: Statistics with R

In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis. You will produce a portfolio of data analysis projects from the Specialization that demonstrates mastery of statistical data analysis from exploratory analysis to inference to modeling, suitable for applying for statistical analysis or data scientist positions....
Statistics with R

Preguntas Frecuentes

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • Si estás suscrito, obtienes una prueba gratis de 7 días, que podrás cancelar cuando desees sin ningún tipo de penalidad. Una vez transcurrido ese tiempo, no realizamos reembolsos. No obstante, puedes cancelar tu suscripción cuando quieras. Consulta nuestra política completa de reembolsos.

  • Sí, Coursera ofrece ayuda económica a los estudiantes que no pueden pagar la tarifa. Solicítala haciendo clic en el enlace de Ayuda económica que está debajo del botón “Inscribirse” a la izquierda. Se te pedirá que completes una solicitud. Recibirás una notificación en caso de que se apruebe. Deberás completar este paso para cada uno de los cursos que forman parte del Programa especializado, incluido el proyecto final. Obtén más información.

  • If you want to complete the course and earn a Course Certificate by submitting assignments for a grade, you can upgrade your experience by subscribing to the course for $49/month. You can also apply for financial aid if you can't afford the course fee.

    When you enroll in a course that is part of a Specialization (which this course is), you will automatically be enrolled in the entire Specialization. You can unenroll from the Specialization if you’re not interested in the other courses or cancel your subscription once you complete the single course.

  • To enroll in an individual course, search for the course title in the catalog.

    To get full access to a course, including the option to earn grades and a Course Certificate, you'll need to subscribe. New subscribers will start with a full access subscription, which includes full access to every course in the Coursera catalog. Existing Specialization subscribers will be given the option to update to a full access subscription when enrolling in a new Specialization or course.

    When you enroll in a course that is part of a Specialization, you will automatically be enrolled in the entire Specialization. You can unenroll from the Specialization if you’re not interested in the other courses.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

  • Este Curso no otorga crédito universitario, pero algunas universidades pueden aceptar los Certificados del curso para obtener crédito. Consulta con tu institución para obtener más información. Los Títulos en línea y los Certificados Mastertrack™ de Coursera brindan la oportunidad de obtener créditos universitarios.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.