Chevron Left
Volver a Redes neurales y aprendizaje profundo

Opiniones y comentarios de aprendices correspondientes a Redes neurales y aprendizaje profundo por parte de

111,763 calificaciones
22,150 reseña

Acerca del Curso

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning. By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Principales reseñas

6 de abr. de 2019

A bit easy (python wise) but maybe that's just a reflection of personal experience / practice. The contest is easy to digest (week to week) and the intuitions are well thought of in their explanation.

6 de mar. de 2019

I understand all those thing which you have discussed in this course and I also like the way first tell story of concet and assign assignment. Now I fall in love with neural network and deep learning.

Filtrar por:

326 - 350 de 10,000 revisiones para Redes neurales y aprendizaje profundo

por Maximiliano B

6 de oct. de 2019

This course is excellent and it is a great introduction to deep learning. Every week you learn new techniques and at the end of the course you are able to build a real deep learning application. If you have a solid math background you will gain a better intuition about the details of the algorithms. Finally, Professor Andrew Ng explains the content clearly and shares several best practices as well as useful advices that will make your learning experience very rich. I've loved the heroes of Deep Learning interviews and it is a great plus. I definitely recommend this course and I can’t wait to start the next one of the specialization.

por N Z

18 de ene. de 2019

Amazing course! I have tried learning concepts of neural networks by creating a syllabus for myself which consisted of different resources over the net. However at some point or another I would always reach a big obstacle which would prove to be extremely difficult to surmount and I would always inevitably give up. This course is structured in such a way that respects the current level of the learner and guides the learner through all the concepts without it being impossibly difficult or too easy. This course is only the beginning and I would gladly continue pursuing the other courses to strengthen my deep learning foundations!

por Sebastián J

25 de jun. de 2020

As a teacher myself, I am impressed by how well organized is the course and how well they designed the assignments. Think they are introducing new knowledge to laypeople and they do it very well. However, I would like to get to know more about why neural networks work? In the content, there is a lot of the basis but you do not get to know where the magic comes from? I also love the interviews with the heroes of machine learning. That is something that really takes this course out of a purely instrumental one. Thanks a lot. The course fulfills my purpose of getting to know deep learning and keep me motivated to keep learning.

por Chong O K

17 de oct. de 2020

This is the best online course I have even attended. The instructor can explain advanced technical concepts in an absolutely easy and intuitive way. The instructor also can summaries the most important core concepts using graphs and diagrams which let students understand the core ideas on-the-spot and have prolonged impression. The lab exercises are organised and have a lot of guidance which is very very useful. The guidance is even until code-level which is very helpful in guiding students to produce efficient code. The lab exercises are also integrated with the real-world context that mimics the practices in the industry.

por Yash S

28 de abr. de 2021

This course was awsome, brilliant , hatsoff to all the instructors , very well organized course special for those who are new to deep learning like me.When I start this course I am not confident very much , as I do progress I became confident specially after implementing the concepts to assignments , my math's knowledge about derivatives also helps me a lot . Suggestion - a video about matrix dimension in week 4 , I think this video should be in week 2 or week 3 because I have a problem how the dimension are set to W, b, Z .one small video about it like in week 4 but for 1 hidden or 2 hidden layer network. Think about it

por Benjamin L

30 de sep. de 2020

Really great intro to Neural Networks. Andrew Ng, ( who is a Deep Learning professor and Standford, and co-founder of Coursera) walks you through all of the basic theory of Neural Networks then each weekly assignment you get a framework and then write the code from scratch in Python code from a single level Neural Network all the way up to a deep level network. If you're like me and aren't happy just calling the API without having some understanding of what's actually happening on the inside, this is the AI course for you. And with AI projected to increase the global GDP 14% (13.7T) by 2030 it really is the next step.

por Yunus

28 de dic. de 2020

Chose this course to break into ML, coming from a background in quantitative MRI analysis. The videos are very well structured, and I've found the labs well-designed for cementing understanding of algorithmic implementation. I also appreciate how the course provides concision without skimping on the maths, where required. Having completed this first course, I feel like I have a confident grasp of some neural theoretical fundamentals, and my ability to implement algorithms leaps forwards with each lab I complete. I am aiming to complete the remaining 4 courses in this specialisation, as well as the Coursera ML course.

por Saurabh M

30 de jun. de 2020

Andrew presented the course material in a very structured and systematic manner. The material is definitely a bit heavy, but Andrew does a great job in motivating the solution strategies. The systematic breakup of the backprop system of equations is probably the toughest part of the course, but that too was well-guided and the intuition was explained very well. I had some basic understanding of neural nets coming into this course, but I learnt a lot -especially the implementation aspect. Overall -this icourse had a perfect blend of theory and implementation for me to feel like I can now implement my own Neural Nets!

por Tim F

1 de nov. de 2017

Andrew does a fantastic job of making this material accessible. This course is a great introduction to deep learning and won't overwhelm you with the details of the underlying mathematics. If you understand some fairly basic linear algebra and know how to take derivatives you'll be fine. The lectures are incredibly clear, and this is one of the best Coursera classes I've taken. The only critique I have is that the homework could be a little bit more challenging - or (if that would undermine the introductory nature of the class) there could be additional optional problems that push students a little bit harder.

por Kevin C

28 de oct. de 2017

A review from a business student with some programming and statistic foundation.

The programming assignments are great, guiding you to build part by part of the model.

Whenever you feel unsure what to do, make sure you read the instruction carefully, as clues/hints are often in there.

It's feels so awesome that I could finally construct deep neural network by myself instead of using packages that I have "some kind of" idea what's happening behind the scene.

Thank you Andrew! Your courses really inspire me, and when I become a master some day I will share my knowledge and experiences to inspire younger generations!

por Ningchuan W

9 de ene. de 2021

Good introduction to deep learning.

As Andrew said, the hard part is correctly deriving the matrix derivatives. not a easy job because it needs many prerequisites.

When I did programming assignments, I was not familiar with python syntax and had to google sometimes. I hope that Andrew includes more useful tricks/techniques that are commonly used in real life programming. I am not a programming beginner. But after years being in school, I am kind of less sharp than before.

The deadline gave me some pressure too. I am having more responsibilities as my family size getting bigger.

Thanks Andrew's team again.

por Jong H S

30 de sep. de 2017

This course is really an essential first step to AI. Using Logistic Regression to kickstart is a great way to demystify Deep Neural Network. One of my greatest weaknesses in learning Deep Neural Network was keeping track of correct dimensions in matrices. This course has a special topic on that, very thoughtful indeed. Having taken Geoffrey Hinton's Neural Networks for Machine Learning, I still consider the programming assignments to be very challenging but there are plenty of materials that helped me getting through it. All in all, this is a timely, thoughtful and extremely effective Deep Learning course.

por Fezan R

22 de abr. de 2019

Andrew NG is the most humble and talented teacher I ever came across. This course is paced right for beginners like me, prior to this course I had taken his Machine Learning course. I had basic ideas of logistic regression and Neural Network before. But this course enhanced my learning and also Python is a big help. (though sometimes i have to look for documentation even for most simple things, like getting a random array of certain dimension, but it aint a big deal). The core of this course is the understanding of forward and backward propagation. Which Andrew did with great details and make it simplified.

por Shubham P

21 de ene. de 2021

The instructor is exceptionally knowledgeable in the field. The way he explained the concepts was superb. All the difficult concepts were made exceptionally easy. I thoroughly enjoyed the course and learned many things throughout. Also the assignments on the way were very helpful for a hands-on session. They were a means to apply the concepts we learned and build confidence. Looking forward to learn more concepts in next course of the series. And I'd like to say thank you to Andrew Ng and to all his colleagues who are directly or indirectly involved in the creation of this beautiful course. Thank you all!

por Chang X

18 de jun. de 2020

Such a great course! I had some basic khnowledge but without a systematic view. This course totally made me more familiar with the foundation and theory of deep learning. I am so grateful.

One thing I think can be improved is the tips and hints in the programming assignments. It appears the instruction are very detailed and I think the team can consider making a harder version of the programming assignments for those experienced students.

Moreover, the Jupyter Notebook is fantastic, but it can be hard to navigate through the window, so maybe an outline view (with all the function names) would be helpful!

por Mo R

30 de ago. de 2019

Amazing course. Andrew has really streamlined the concepts, made the course easy to follow and at the same time leaves room for further analysis and curiosity. It is so well structured that can transfer complex concepts easily to you and therefore maintain the excitement in the student to keep on going at his/her own speed. What I loved most about the course was the fact that for some reason it seems like Andrew knows where to give you further explanation about what just happened or where you might get stuck in the code and in the lecture. Thank you Andrew. Such an amazing experience and great structure.

por Raghuraj M

1 de jun. de 2020

To start speaking, this is a really good course.

It guides through the basics of how to build a neural network instead of just importing from sklearn library. It helps one understand what is happening behind the scenes when one imports models from libraries like sklearn, PyTorch, etc. This course has taught how efficiently one can decrease computation time using vectorization as it made programming that enjoyable and exciting, it also reduced the time taken to complete the program exponentially.

I would recommend everyone who wants to learn how a machine learning model works and also build their own model

por Mallikarjun C

31 de ene. de 2019

I found this course to be extremely good. It covers nicely theory, implementation and application of Neural Networks and Deep Learning. Prof. Andrew Ng through his video lectures makes it fun and easy to learn this subject with the right emphasis on key points. The quiz's and program assignments are really good, reinforcing the concepts. In addition I found the Hero's of Deep learning conversation videos towards the end of each week, informative and thought provoking. This is my second course after taking Machine learning on Coursera. I am enjoying learning on Coursera. Thank you Prof Andrew and Team.

por Chatchai J

27 de nov. de 2021

คอสนี้เหมาะกับใคร: ไม่เหมาะกับคนที่ไม่เคยเรียนเลย แบบมาเรียนอันนี้ ตายตายแน่ๆ เพราะเขาไม่ได้สอนแต่เริ่มต้น อารมณ์ประมาณว่าต้องมีความรู้ในตัวด้วยแล้วถึงมาเรียนได้ แนะนำคอส จาก อ. นพดล ช่วยได้เยอะเลย ควรมีความรู้ในการใช้ python -> pandas, google colab เบื้องต้นบ้างเพราะคอสนี้ไม่ได้สอนอะไรมาก มาปุ๊บจับเราโยนทำๆๆ แต่ยังดีเขายังไกด์ว่า search google ด้วยคำนี้นะแล้วลองอ่านดู ก็ถือว่าไม่ต้องไปค้นยันรากเง้า ความรู้แคลคูลัส กับ matrix ก็สำคัญ เพราะในนี้จะคณิตศาตร์พอสมควร (ใครบอกเขียนโปรแกรมไม่จำเป็นต้องเก่งคณิตนี้ไม่ใช่ชัวร์) แต่ถ้าไม่รู้ก็ไม่เป็นไรเพราะในคอสนี้เขาอธิบายพอสมควร แต่รู้ไว้จะสบายกว่า

por Maryllia K

27 de oct. de 2020

Excellent step by step introduction to NN and DL. I took the course to brush up my ML/DL skills and strengthen my understanding on the DL basic concepts. I couldn't be more satisfied by the structure and overall layout of the course. The instructors give the right amount of detail for a beginners course without omitting important concepts. Plus, with the code available a practitioner can go ahead and practice the exercises on their own to make sure that they have mastered the concepts or identify the areas they might need to practice more. I really enjoyed the course and I would highly recommend it.

por Carsten W

28 de dic. de 2019

Fantastic course with well structured Jupyter notebooks for your Python programming assignments. The assignments were pretty easy due to extensive explanations and repetition of key formulas from the lectures within the notebook. To be fair to others, maybe it was also a bit easy, because I just recently completed Andrew's older Machine Learning course (with programming in Octave and still highly recommended for a slightly deeper foundation in ML - I think), so I was already well familiar with the key concepts, vectorization etc, which I only had to transfer to Python. In any case, awesome course!

por Heshmat S

26 de dic. de 2017

I've taken Andrew's "machine learning" course before, which I loved so much and learned a lot from it. The only issue with it was the use of "matlab/octave"; fortunately, he switched to "python" in this specialization course. :-)

This first course in the "deep learning specialization" is a very well though-out introduction to deep learning. Starting from logistic regression, Andrew builds upon the materials and masterfully introduces the more sophisticated concepts one after another. The programming assignments make the course even more fun and practical. Loved the course.

Thank you Andrew & Co. :-)

por Obaid S

6 de jul. de 2019

This course is one of the best online course I have taken so far. With basic math knowledge (you just need to know what is a vector and what is a slope) you can complete all the assignments and the course itself. In this course, you get in-depth knowledge of how a neural network works by implementing it yourself. The best thing about this approach is that you will be very confident as you start playing with high-level libraries like tensorflow, since you will know what is going on under the hood. I think this course is a great place to start if you are new to deeplearning before using any library.

por Fabian A

28 de oct. de 2017

I really enjoyed the Jupyter Notebook approach as it really suits my experience with Python3 and love of pedagogical and sound presentation of theory. The code can sometimes be a bit too forgiving in that it would be possible to go through it without thorough examinations of dimensions, calculations and the like. I, however, am doing this for learning rather than certification so it was a minor issue.

Really nice videos, a clear structure and a very thoughtful balance between the complexities of math and the "get things done" possibilities that jupyter notebook and Coursera permits. A great course!

por Debmalya M

17 de may. de 2020

Perhaps this is the first course of this type that does not use any fancy python libraries to do something as complex as deep learning. It just uses numpy. For this reason, if tomorrow the python language gets obsolete, skill transfer would be very easy. The assignments are not too hard If you watch the videos regularly, but the contents are by no means easy to understand, particularly the parts where the instructor teaches matrix dimensions and backpropagation. I think watching the videos is not enough unless you practice the concepts yourself, with datasets downloaded from some other websites.