Acerca de este Curso
50,629 calificaciones
9,718 revisiones

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Inglés (English)

Subtítulos: Chino (tradicional), Árabe (Arabic), Francés (French), Ucraniano, Chino (simplificado), Portugués (de Brasil), Coreano, Turco (Turkish), Inglés (English), Japonés...

Habilidades que obtendrás

Artificial Neural NetworkBackpropagationPython ProgrammingDeep Learning

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Inglés (English)

Subtítulos: Chino (tradicional), Árabe (Arabic), Francés (French), Ucraniano, Chino (simplificado), Portugués (de Brasil), Coreano, Turco (Turkish), Inglés (English), Japonés...

Programa - Qué aprenderás en este curso

2 horas para completar

Introduction to deep learning

Be able to explain the major trends driving the rise of deep learning, and understand where and how it is applied today. ...
7 videos (Total 76 minutos), 2 readings, 1 quiz
7 videos
What is a neural network?7m
Supervised Learning with Neural Networks8m
Why is Deep Learning taking off?10m
About this Course2m
Course Resources1m
Geoffrey Hinton interview40m
2 lecturas
Frequently Asked Questions10m
How to use Discussion Forums10m
1 ejercicio de práctica
Introduction to deep learning20m
7 horas para completar

Neural Networks Basics

Learn to set up a machine learning problem with a neural network mindset. Learn to use vectorization to speed up your models. ...
19 videos (Total 161 minutos), 2 readings, 3 quizzes
19 videos
Logistic Regression5m
Logistic Regression Cost Function8m
Gradient Descent11m
More Derivative Examples10m
Computation graph3m
Derivatives with a Computation Graph14m
Logistic Regression Gradient Descent6m
Gradient Descent on m Examples8m
More Vectorization Examples6m
Vectorizing Logistic Regression7m
Vectorizing Logistic Regression's Gradient Output9m
Broadcasting in Python11m
A note on python/numpy vectors6m
Quick tour of Jupyter/iPython Notebooks3m
Explanation of logistic regression cost function (optional)7m
Pieter Abbeel interview16m
2 lecturas
Deep Learning Honor Code2m
Programming Assignment FAQ10m
1 ejercicio de práctica
Neural Network Basics20m
5 horas para completar

Shallow neural networks

Learn to build a neural network with one hidden layer, using forward propagation and backpropagation. ...
12 videos (Total 109 minutos), 2 quizzes
12 videos
Neural Network Representation5m
Computing a Neural Network's Output9m
Vectorizing across multiple examples9m
Explanation for Vectorized Implementation7m
Activation functions10m
Why do you need non-linear activation functions?5m
Derivatives of activation functions7m
Gradient descent for Neural Networks9m
Backpropagation intuition (optional)15m
Random Initialization7m
Ian Goodfellow interview14m
1 ejercicio de práctica
Shallow Neural Networks20m
5 horas para completar

Deep Neural Networks

Understand the key computations underlying deep learning, use them to build and train deep neural networks, and apply it to computer vision. ...
8 videos (Total 64 minutos), 3 quizzes
8 videos
Forward Propagation in a Deep Network7m
Getting your matrix dimensions right11m
Why deep representations?10m
Building blocks of deep neural networks8m
Forward and Backward Propagation10m
Parameters vs Hyperparameters7m
What does this have to do with the brain?3m
1 ejercicio de práctica
Key concepts on Deep Neural Networks20m
9,718 revisionesChevron Right


comenzó una nueva carrera después de completar estos cursos


consiguió un beneficio tangible en su carrera profesional gracias a este curso


consiguió un aumento de sueldo o ascenso

Principales revisiones

por BCDec 4th 2018

Extremely helpful review of the basics, rooted in mathematics, but not overly cumbersome. Very clear, and example coding exercises greatly improved my understanding of the importance of vectorization.

por JPFeb 12th 2018

I would love some pointers to additional references for each video. Also, the instructor keeps saying that the math behind backprop is hard. What about an optional video with that? Otherwise, awesome!



Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University,, Ecole CentraleSupelec

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University,

Acerca de is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Acerca del programa especializado Aprendizaje profundo

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizaje profundo

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.