In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize reward. We will begin this journey by investigating how our policy evaluation or prediction methods like Monte Carlo and TD can be extended to the function approximation setting. You will learn about feature construction techniques for RL, and representation learning via neural networks and backprop. We conclude this course with a deep-dive into policy gradient methods; a way to learn policies directly without learning a value function. In this course you will solve two continuous-state control tasks and investigate the benefits of policy gradient methods in a continuous-action environment.
Este curso forma parte de Programa especializado: Aprendizaje por refuerzo
Ofrecido Por
Acerca de este Curso
Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.
Habilidades que obtendrás
- Artificial Intelligence (AI)
- Machine Learning
- Reinforcement Learning
- Function Approximation
- Intelligent Systems
Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.
Programa - Qué aprenderás en este curso
Welcome to the Course!
On-policy Prediction with Approximation
Constructing Features for Prediction
Control with Approximation
Policy Gradient
Reseñas
- 5 stars84,16 %
- 4 stars12,92 %
- 3 stars1,97 %
- 2 stars0,65 %
- 1 star0,26 %
Principales reseñas sobre PREDICTION AND CONTROL WITH FUNCTION APPROXIMATION
Well peaced and thoughtfully explained course. Highly recommended for anyone willing to set solid grounding in Reinforcement Learning. Thank you Coursera and Univ. of Alberta for the masterclass.
Good course with a lot of technical information. I would add another assignment or make current ones a little bit more extensive, as there are many concepts to learn.
A great and interactive course to learn about using function approximation for control. Great way to learn DRL and its alternatives.
Solid intro course. Wish we covered more using neural nets. The neural net equations used very non-standard notation. Wish the assignments were a little more creative. Too much grid world.
Acerca de Programa especializado: Aprendizaje por refuerzo

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
¿Cuál es la política de reembolsos?
¿Hay ayuda económica disponible?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.