Chevron Left
Volver a Investigación reproducible

Opiniones y comentarios de aprendices correspondientes a Investigación reproducible por parte de Universidad Johns Hopkins

4.6
estrellas
4,112 calificaciones
598 reseña

Acerca del Curso

Este curso se centra en los conceptos y las herramientas que permiten realizar análisis de datos modernos de forma reproducible. La investigación reproducible se basa en la idea de que los análisis de datos y, en general, las afirmaciones científicas, se publican con sus datos y el código del software para que otros puedan verificar los hallazgos y basarse en ellos. La necesidad de reproducibilidad aumenta drásticamente a medida que los análisis de datos se vuelven más complejos, con conjuntos de datos más grandes y cálculos más sofisticados. La reproducibilidad permite que las personas se centren en el contenido real de un análisis de datos, en lugar de en los detalles superficiales que aparecen en un resumen escrito. Además, la reproducibilidad hace que un análisis sea más útil para otros, ya que los datos y el código que en realidad permitieron llevar a cabo el análisis están disponibles. Este curso se centrará en las herramientas de análisis estadístico alfabetizadas que permiten publicar los análisis de datos en un único documento que permite a otros ejecutar fácilmente el mismo análisis para obtener los mismos resultados....

Principales reseñas

AA

12 de feb. de 2016

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

RR

19 de ago. de 2020

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

Filtrar por:

376 - 400 de 580 revisiones para Investigación reproducible

por Carlos R

26 de dic. de 2016

Excelente

por saroj r

14 de may. de 2016

i like it

por 杜冈桃

7 de oct. de 2017

Perfect

por Sanjay B

27 de oct. de 2020

Great.

por Medha B

18 de oct. de 2020

Great.

por Adán H

6 de nov. de 2017

thanks

por Zhao M

1 de nov. de 2016

good.

por manoj k

31 de ago. de 2016

Great

por Chandan K S

13 de nov. de 2020

nice

por �SADHARAN G

17 de jul. de 2020

good

por Rizwan M

5 de sep. de 2019

good

por SriHari a

21 de abr. de 2019

Good

por Amit K R

27 de nov. de 2017

Good

por Jay B

24 de ago. de 2017

Good

por Yi-Yang L

10 de abr. de 2017

Good

por Oleksandr F

24 de nov. de 2016

Nice

por 朱荣荣

11 de mar. de 2016

good

por Meidani P

3 de dic. de 2021

-

por Suriya

24 de feb. de 2018

O

por Marat G

22 de mar. de 2017

)

por Jeffrey P

15 de mar. de 2016

By far the most time consuming, yet rewarding course in the data science specialization thus far. Literate Programing in general and R Markdown in particular are simple enough as concepts, but do take some time to grow accustomed to. However, I found the course to be a compelling argument for reproducibility that has application beyond just Data Science proper.

Although the technology is completely different, the concepts behind reproducibility really resonated with me and the work I do managing a division in Application Development. I'm constantly having to balance seemingly limitless demands, limited resources, and the difficulty of retaining staff in highly-competitive industry. Reproducibility becomes not just the basis for cross-training, product stabilization, and growth, but is a necessary ingredient of a team's survival.

This course not only cemented my own thoughts on the topic, but gave me some new ideas and tools for process improvement on the job.

por Nicolas L

15 de abr. de 2020

El proyecto final del curso tiene poco que ver con lo enseñado a lo largo de éste, era muy necesario haber tomado los cursos anteriores (en especial R programming y Exploración de Datos). Además, el proyecto debería estar mejor planificado, se buscaba que la mayor parte del tiempo estuviera en limpiar la data? O un objetivo más fuerte era el uso de gráficos más elaborados u otro al interior de RMarkdown? O un análisis un poco más elaborado que sólo sumar?

por Siying R

21 de oct. de 2018

This course teaches how to present a R code analysis that others can run the code to reproduce the same result. The length of the lecture is minimum and the project helps me to make the reproducible analysis on my own. One thing I would like to see improvement is that the instructor's speech. I hope that he can speak more smoothly without stopping to repeat words. It was quite a struggle to listen to his talking. Thank you.

por Travis M

2 de abr. de 2016

The first assignment should occur during the second week instead of the first given how the material is presented. The second and final project is very time consuming. Ideally this course should run for 6 weeks instead of 4 because of this. The second project is challenging and it definitely drives home the point about reproducible result given the state of the raw data.

por David R

22 de oct. de 2018

I don't think the content of this course was as polished as the others in the specialisation, the lectures seemed to be a mixture of repeats and videoed lecture room talks, based on content I'd probably have given 3 stars, however the 2 course projects, which were quite challenging given lecture content pulled it up, I found these very worthwhile.