Acerca de este Curso
4.5
3,108 calificaciones
444 revisiones

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 10 horas para completar

Sugerido: 4-9 hours/week...

Inglés (English)

Subtítulos: Inglés (English), Vietnamita

Qué aprenderás

  • Check

    Determine the reproducibility of analysis project

  • Check

    Organize data analysis to help make it more reproducible

  • Check

    Publish reproducible web documents using Markdown

  • Check

    Write up a reproducible data analysis using knitr

Habilidades que obtendrás

KnitrData AnalysisR ProgrammingMarkup Language

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 10 horas para completar

Sugerido: 4-9 hours/week...

Inglés (English)

Subtítulos: Inglés (English), Vietnamita

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Week 1: Concepts, Ideas, & Structure

This week will cover the basic ideas of reproducible research since they may be unfamiliar to some of you. We also cover structuring and organizing a data analysis to help make it more reproducible. I recommend that you watch the videos in the order that they are listed on the web page, but watching the videos out of order isn't going to ruin the story. ...
9 videos (Total 72 minutos), 3 readings, 1 quiz
9 videos
What is Reproducible Research About?8m
Reproducible Research: Concepts and Ideas (part 1)7m
Reproducible Research: Concepts and Ideas (part 2) 5m
Reproducible Research: Concepts and Ideas (part 3) 3m
Scripting Your Analysis 4m
Structure of a Data Analysis (part 1)12m
Structure of a Data Analysis (part 2)17m
Organizing Your Analysis11m
3 lecturas
Syllabus10m
Pre-course survey10m
Course Book: Report Writing for Data Science in R10m
1 ejercicio de práctica
Week 1 Quiz20m
Semana
2
3 horas para completar

Week 2: Markdown & knitr

This week we cover some of the core tools for developing reproducible documents. We cover the literate programming tool knitr and show how to integrate it with Markdown to publish reproducible web documents. We also introduce the first peer assessment which will require you to write up a reproducible data analysis using knitr. ...
9 videos (Total 59 minutos), 2 quizzes
9 videos
Markdown5m
R Markdown6m
R Markdown Demonstration7m
knitr (part 1)7m
knitr (part 2) 4m
knitr (part 3) 4m
knitr (part 4) 9m
Introduction to Course Project 14m
1 ejercicio de práctica
Week 2 Quiz10m
Semana
3
1 hora para completar

Week 3: Reproducible Research Checklist & Evidence-based Data Analysis

This week covers what one could call a basic check list for ensuring that a data analysis is reproducible. While it's not absolutely sufficient to follow the check list, it provides a necessary minimum standard that would be applicable to almost any area of analysis....
10 videos (Total 60 minutos)
10 videos
RPubs 3m
Reproducible Research Checklist (part 1)8m
Reproducible Research Checklist (part 2) 10m
Reproducible Research Checklist (part 3) 6m
Evidence-based Data Analysis (part 1)3m
Evidence-based Data Analysis (part 2) 3m
Evidence-based Data Analysis (part 3) 4m
Evidence-based Data Analysis (part 4) 4m
Evidence-based Data Analysis (part 5) 7m
Semana
4
3 horas para completar

Week 4: Case Studies & Commentaries

This week there are two case studies involving the importance of reproducibility in science for you to watch....
5 videos (Total 59 minutos), 1 reading, 1 quiz
5 videos
Case Study: Air Pollution14m
Case Study: High Throughput Biology30m
Commentaries on Data Analysis2m
Introduction to Peer Assessment 232s
1 lectura
Post-Course Survey10m
4.5
444 revisionesChevron Right

32%

comenzó una nueva carrera después de completar estos cursos

30%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones

por AAFeb 13th 2016

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

por ASJun 23rd 2017

Of course, I liked this course. There was even an extra non-graded assignment. Plus two graded assignments. Quality instruction videos and lots of practice. Everything a learner needs.

Instructores

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Acerca de Universidad Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Acerca del programa especializado Ciencia de Datos

Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material....
Ciencia de Datos

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.