Chevron Left
Volver a Generate Synthetic Images with DCGANs in Keras

Opiniones y comentarios de aprendices correspondientes a Generate Synthetic Images with DCGANs in Keras por parte de Coursera Project Network

4.5
estrellas
246 calificaciones

Acerca del Curso

In this hands-on project, you will learn about Generative Adversarial Networks (GANs) and you will build and train a Deep Convolutional GAN (DCGAN) with Keras to generate images of fashionable clothes. We will be using the Keras Sequential API with Tensorflow 2 as the backend. In our GAN setup, we want to be able to sample from a complex, high-dimensional training distribution of the Fashion MNIST images. However, there is no direct way to sample from this distribution. The solution is to sample from a simpler distribution, such as Gaussian noise. We want the model to use the power of neural networks to learn a transformation from the simple distribution directly to the training distribution that we care about. The GAN consists of two adversarial players: a discriminator and a generator. We’re going to train the two players jointly in a minimax game theoretic formulation. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

AA

26 de may. de 2020

The course was well equipped. It gave me the basic idea of how GAN works and how to implement it. If you want to get started with GAN then it can be a better course to lead you.

AG

13 de jun. de 2020

In this course, you will learn about a lot of different ways to join ideas to make more complex and interesting knowledge of keras

Filtrar por:

1 - 25 de 47 revisiones para Generate Synthetic Images with DCGANs in Keras

por Krishna V D

29 de may. de 2020

por Saida M D C

25 de may. de 2020

por DARSHAN D

1 de ago. de 2020

por Sai D P

12 de jun. de 2020

por Paras V

31 de may. de 2020

por Andrea R

13 de may. de 2020

por Ha Q

22 de jun. de 2020

por Никита А Ф

10 de sep. de 2020

por Abrar I A

27 de may. de 2020

por Abhishek P G

14 de jun. de 2020

por David C

20 de ago. de 2021

por Sumit A T

21 de jul. de 2020

por Warunee S

4 de jul. de 2020

por sunil k s

13 de ago. de 2020

por Bappaditya D

4 de jun. de 2021

por Adrien A

21 de dic. de 2020

por MS. S S

15 de ago. de 2020

por Ahmed A

21 de may. de 2020

por Ali A

19 de jun. de 2020

por Mayank S

1 de may. de 2020

por Md. S A

6 de sep. de 2020

por Pratikshya M

2 de nov. de 2020

por Rishabh R

17 de may. de 2020

por Vishnu N

18 de oct. de 2020

por Yuvraj S C

24 de sep. de 2020