Perform Sentiment Analysis with scikit-learn

4.5
estrellas
402 calificaciones
ofrecido por
Coursera Project Network
9390 ya inscrito
En este Proyecto guiado, tú:

Build and employ a logistic regression classifier using scikit-learn

Clean and pre-process text data

Perform feature extraction with The Natural Language Toolkit (NLTK)

Tune model hyperparameters and evaluate model accuracy

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this project-based course, you will learn the fundamentals of sentiment analysis, and build a logistic regression model to classify movie reviews as either positive or negative. We will use the popular IMDB data set. Our goal is to use a simple logistic regression estimator from scikit-learn for document classification. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Data ScienceMachine LearningPython ProgrammingData AnalysisScikit-Learn

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and Importing the Data

  2. Transforming Documents into Feature Vectors

  3. Term Frequency-Inverse Document Frequency

  4. Calculate TF-IDF of the Term 'Is'

  5. Data Preparation

  6. Tokenization of Documents

  7. Document Classification Using Logistic Regression

  8. Load Saved Model from Disk

  9. Model Accuracy

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre PERFORM SENTIMENT ANALYSIS WITH SCIKIT-LEARN

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.