Support Vector Machine Classification in Python

118 calificaciones
ofrecido por
Coursera Project Network
4,401 ya inscrito
En este proyecto guiado, tú:

import the dataset and perform training/testing set splits

Apply feature scaling for normalization

Build an SVM classifier and make Predictions

Build a Confusion Matrix and Visualize the results

Clock2 hours
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1-hour long guided project-based course, you will learn how to use Python to implement a Support Vector Machine algorithm for classification. This type of algorithm classifies output data and makes predictions. The output of this model is a set of visualized scattered plots separated with a straight line. You will learn the fundamental theory and practical illustrations behind Support Vector Machines and learn to fit, examine, and utilize supervised Classification models using SVM to classify data, using Python. We will walk you step-by-step into Machine Learning supervised problems. With every task in this project, you will expand your knowledge, develop new skills, and broaden your experience in Machine Learning. Particularly, you will build a Support Vector Machine algorithm, and by the end of this project, you will be able to build your own SVM classification model with amazing visualization. In order to be successful in this project, you should just know the basics of Python and classification algorithms.

Habilidades que desarrollarás

Machine LearningPython ProgrammingSupport Vector Machine (SVM)classificationSupervised Learning

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Understand the concept of building a Support Vector Machine classification algorithm with a real-world example

  2. Import and explore the dataset and libraries: numpy, pandas and matplotlib

  3. Split the dataset into training set and testing set

  4. Apply feature scaling to normalize the input features

  5. Fit the SVM classifier to the dataset and making predictions

  6. Visualize training and testing sets results

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso



Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.