- Machine Learning
- Github
- R Programming
- Regression Analysis
- Data Visualization (DataViz)
- Statistics
- Statistical Inference
- Statistical Hypothesis Testing
- Model Selection
- Generalized Linear Model
- Linear Regression
- Random Forest
ofrecido por
Qué aprenderás
Perform regression analysis, least squares and inference using regression models.
Build and apply prediction functions
Develop public data products
Understand the process of drawing conclusions about populations or scientific truths from data
Habilidades que obtendrás
Acerca de este Programa Especializado
Proyecto de aprendizaje aplicado
Each course in this Data Science: Statistics and Machine Learning Specialization includes a hands-on, peer-graded assignment. To earn the Specialization Certificate, you must successfully complete the hands-on, peer-graded assignment in each course, including the final Capstone Project.
Se requiere cierto nivel de experiencia relacionada.
Se requiere cierto nivel de experiencia relacionada.
Cómo funciona el programa especializado
Toma cursos
Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.
Proyecto práctico
Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.
Obtén un certificado
Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

Hay 5 cursos en este Programa Especializado
Inferencia estadística
Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance. This course presents the fundamentals of inference in a practical approach for getting things done. After taking this course, students will understand the broad directions of statistical inference and use this information for making informed choices in analyzing data.
modelos de regresión
Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.
aprendizaje automático práctico
One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.
Developing Data Products
A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages, and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about data to a mass audience.
ofrecido por

Universidad Johns Hopkins
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

Preguntas Frecuentes
¿Cuál es la política de reembolsos?
¿Puedo inscribirme en un solo curso?
¿Hay ayuda económica disponible?
¿Puedo tomar este curso de manera gratuita?
¿Este curso es 100 % en línea? ¿Necesito asistir a alguna clase en persona?
¿Cuánto tiempo se necesita para completar un programa especializado?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
¿Recibiré crédito universitario por completar el programa especializado?
What will I be able to do upon completing the Specialization?
Can I sign up for the course without paying or applying for financial aid?
¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.