Probabilistic Graphical Models. Master a new way of reasoning and learning in complex domains

4.6

estrellas

1,971 calificaciones

ofrecido por

Programa especializado: Probabilistic Graphical Models Universidad de Stanford

InferenceBayesian NetworkBelief PropagationGraphical ModelMarkov Random FieldGibbs SamplingMarkov Chain Monte Carlo (MCMC)AlgorithmsExpectation–Maximization (EM) Algorithm

23,128 vistas recientes

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.

Through various lectures, quizzes, programming assignments and exams, learners in this specialization will practice and master the fundamentals of probabilistic graphical models. This specialization has three five-week courses for a total of fifteen weeks.

Resultados profesionales del estudiante

50%

Comenzaste una nueva carrera profesional después de completar este programa especializado.

20%

Conseguiste un aumento de sueldo o ascenso.

Certificado para compartir

Obtén un certificado al finalizar

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Diseñado para quienes ya pertenecen al sector.

Aprox. 4 meses para completar

Sugerido 11 horas/semana

Inglés (English)

Subtítulos: Inglés (English)

Resultados profesionales del estudiante

50%

Comenzaste una nueva carrera profesional después de completar este programa especializado.

20%

Conseguiste un aumento de sueldo o ascenso.

Certificado para compartir

Obtén un certificado al finalizar

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Diseñado para quienes ya pertenecen al sector.

Aprox. 4 meses para completar

Sugerido 11 horas/semana

Inglés (English)

Subtítulos: Inglés (English)

4.7

estrellas

1,265 calificaciones

•

277 revisiones

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.

This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly.

4.6

estrellas

437 calificaciones

•

63 revisiones

This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem.

4.6

estrellas

269 calificaciones

•

41 revisiones

This course is the third in a sequence of three. Following the first course, which focused on representation, and the second, which focused on inference, this course addresses the question of learning: how a PGM can be learned from a data set of examples. The course discusses the key problems of parameter estimation in both directed and undirected models, as well as the structure learning task for directed models. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of two commonly used learning algorithms are implemented and applied to a real-world problem.

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.

What is the refund policy?

If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

Can I just enroll in a single course?

Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

Is financial aid available?

Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

Can I take the course for free?

When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.

Is this course really 100% online? Do I need to attend any classes in person?

This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

How long does it take to complete the Specialization?

The Specialization has three five-week courses, for a total of fifteen weeks.

What background knowledge is necessary?

This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

Do I need to take the courses in a specific order?

For best results, the courses should be taken in order.

Will I earn university credit for completing the Specialization?

No.

What will I be able to do upon completing the Specialization?

You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.