Acerca de este Programa Especializado

24,240 vistas recientes
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Resultados profesionales del estudiante
50%
Comenzaste una nueva carrera profesional después de completar este programa especializado.
20%
Conseguiste un aumento de sueldo o ascenso.

Certificado para compartir

Obtén un certificado al finalizar

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Aprox. 4 meses para completar

Sugerido 7 horas/semana

Inglés (English)

Subtítulos: Inglés (English)
Resultados profesionales del estudiante
50%
Comenzaste una nueva carrera profesional después de completar este programa especializado.
20%
Conseguiste un aumento de sueldo o ascenso.

Certificado para compartir

Obtén un certificado al finalizar

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Aprox. 4 meses para completar

Sugerido 7 horas/semana

Inglés (English)

Subtítulos: Inglés (English)

Cómo funciona el programa especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 3 cursos en este Programa Especializado

Curso1

Curso 1

Probabilistic Graphical Models 1: Representation

4.7
estrellas
1,217 calificaciones
265 revisiones
Curso2

Curso 2

Probabilistic Graphical Models 2: Inference

4.6
estrellas
419 calificaciones
60 revisiones
Curso3

Curso 3

Probabilistic Graphical Models 3: Learning

4.6
estrellas
257 calificaciones
37 revisiones

ofrecido por

Logotipo de Universidad de Stanford

Universidad de Stanford

Revisiones

Principales revisiones sobre PROBABILISTIC GRAPHICAL MODELS

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • The Specialization has three five-week courses, for a total of fifteen weeks.

  • This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

    Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

  • For best results, the courses should be taken in order.

  • No.

  • You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.