Acerca de este Programa Especializado

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Aprox. 4 meses para completar

Sugerido 9 horas/semana

Inglés (English)

Subtítulos: Inglés (English)

Qué aprenderás

  • Check

    Understand the detailed architecture and components of a self-driving car software stack

  • Check

    Implement methods for static and dynamic object detection, localization and mapping, behaviour and maneuver planning, and vehicle control

  • Check

    Use realistic vehicle physics, complete sensor suite: camera, LIDAR, GPS/INS, wheel odometry, depth map, semantic segmentation, object bounding boxes

  • Check

    Demonstrate skills in CARLA and build programs with Python

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel avanzado

Aprox. 4 meses para completar

Sugerido 9 horas/semana

Inglés (English)

Subtítulos: Inglés (English)

Cómo funciona Programa Especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 4 cursos en este Programa Especializado

Curso1

Introduction to Self-Driving Cars

4.8
125 calificaciones
25 revisiones
Welcome to Introduction to Self-Driving Cars, the first course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the terminology, design considerations and safety assessment of self-driving cars. By the end of this course, you will be able to: - Understand commonly used hardware used for self-driving cars - Identify the main components of the self-driving software stack - Program vehicle modelling and control - Analyze the safety frameworks and current industry practices for vehicle development For the final project in this course, you will develop control code to navigate a self-driving car around a racetrack in the CARLA simulation environment. You will construct longitudinal and lateral dynamic models for a vehicle and create controllers that regulate speed and path tracking performance using Python. You’ll test the limits of your control design and learn the challenges inherent in driving at the limit of vehicle performance. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws). You will also need certain hardware and software specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
Curso2

State Estimation and Localization for Self-Driving Cars

4.6
31 calificaciones
5 revisiones
Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws)....
Curso3

Visual Perception for Self-Driving Cars

4.3
10 calificaciones
1 revisiones
Welcome to Visual Perception for Self-Driving Cars, the third course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the end of this course, you will be able to work with the pinhole camera model, perform intrinsic and extrinsic camera calibration, detect, describe and match image features and design your own convolutional neural networks. You'll apply these methods to visual odometry, object detection and tracking, and semantic segmentation for drivable surface estimation. These techniques represent the main building blocks of the perception system for self-driving cars. For the final project in this course, you will develop algorithms that identify bounding boxes for objects in the scene, and define the boundaries of the drivable surface. You'll work with synthetic and real image data, and evaluate your performance on a realistic dataset. This is an advanced course, intended for learners with a background in computer vision and deep learning. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses)....
Curso4

Motion Planning for Self-Driving Cars

Welcome to Motion Planning for Self-Driving Cars, the fourth course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be able to find the shortest path over a graph or road network using Dijkstra's and the A* algorithm, use finite state machines to select safe behaviors to execute, and design optimal, smooth paths and velocity profiles to navigate safely around obstacles while obeying traffic laws. You'll also build occupancy grid maps of static elements in the environment and learn how to use them for efficient collision checking. This course will give you the ability to construct a full self-driving planning solution, to take you from home to work while behaving like a typical driving and keeping the vehicle safe at all times. For the final project in this course, you will implement a hierarchical motion planner to navigate through a sequence of scenarios in the CARLA simulator, including avoiding a vehicle parked in your lane, following a lead vehicle and safely navigating an intersection. You'll face real-world randomness and need to work to ensure your solution is robust to changes in the environment. This is an intermediate course, intended for learners with some background in robotics, and it builds on the models and controllers devised in Course 1 of this specialization. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses) and calculus (ordinary differential equations, integration)....

Instructores

Avatar

Steven Waslander

Associate Professor
Aerospace Studies
Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies

Acerca de Universidad de Toronto

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • Este programa especializado no otorga crédito universitario, pero algunas universidades pueden aceptar los Certificados del programa especializado para el crédito. Consulta con tu institución para obtener más información.

  • Each course is intended to take 4-6 weeks, roughly one week per module. At this pace, the entire Specialization will take you 4-6 months to complete.

  • See the list of prerequisites provided in Module 0 of Course 1. The most important ones are familiarity with linear algebra, calculus, probability theory, and kinematic and dynamic modeling. Some exposure to computer vision, AI or robotics is also useful.

  • The courses are mostly independent and self-paced, so it is possible to mix the order of the courses based on your interests. The only exception is that Course 1 provides a valuable overview of an autonomous vehicle in terms of hardware and software, so we recommend starting with Course 1.

  • You will be able to develop basic implementations of all the main components of an autonomous car software stack, including localization and mapping solutions, object detection and drivable surface detection methods, motion planning approaches and vehicle controllers. You'll be ready to enter the industry with a strong overview of the core requirements and challenges in self-driving development, and you'll have experience with simulating these vehicles in the CARLA simulator.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.