Acerca de este Curso
3.9
454 calificaciones
140 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 29 horas para completar

Sugerido: 5 weeks of study, 5-7 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)...

Habilidades que obtendrás

Bayesian StatisticsBayesian Linear RegressionBayesian InferenceR Programming
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 29 horas para completar

Sugerido: 5 weeks of study, 5-7 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)...

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
1 hora para completar

About the Specialization and the Course

This short module introduces basics about Coursera specializations and courses in general, this specialization: Statistics with R, and this course: Bayesian Statistics. Please take several minutes read this information. Thanks for joining us in this course!...
Reading
1 video (Total: 2 min), 4 readings
Reading4 lecturas
About Statistics with R Specialization10m
About Bayesian Statistics10m
Pre-requisite Knowledge10m
Special Thanks2m
Horas para completar
6 horas para completar

The Basics of Bayesian Statistics

<p>Welcome! Over the next several weeks, we will together explore Bayesian statistics. <p>In this module, we will work with conditional probabilities, which is the probability of event B given event A. Conditional probabilities are very important in medical decisions. By the end of the week, you will be able to solve problems using Bayes' rule, and update prior probabilities.</p><p>Please use the learning objectives and practice quiz to help you learn about Bayes' Rule, and apply what you have learned in the lab and on the quiz. ...
Reading
9 videos (Total: 41 min), 2 readings, 3 quizzes
Video9 videos
Conditional Probabilities and Bayes' Rule2m
Bayes' Rule and Diagnostic Testing6m
Bayes Updating2m
Bayesian vs. frequentist definitions of probability4m
Inference for a Proportion: Frequentist Approach3m
Inference for a Proportion: Bayesian Approach7m
Effect of Sample Size on the Posterior2m
Frequentist vs. Bayesian Inference9m
Reading2 lecturas
Module Learning Objectivesm
Week 1 Lab Instructionsm
Quiz3 ejercicios de práctica
Week 1 Lab12m
Week 1 Practice Quiz20m
Week 1 Quiz20m
Semana
2
Horas para completar
7 horas para completar

Bayesian Inference

In this week, we will discuss the continuous version of Bayes' rule and show you how to use it in a conjugate family, and discuss credible intervals. By the end of this week, you will be able to understand and define the concepts of prior, likelihood, and posterior probability and identify how they relate to one another....
Reading
10 videos (Total: 45 min), 2 readings, 3 quizzes
Video10 videos
From the Discrete to the Continuous5m
Elicitation6m
Conjugacy4m
Inference on a Binomial Proportion5m
The Gamma-Poisson Conjugate Families6m
The Normal-Normal Conjugate Families3m
Non-Conjugate Priors4m
Credible Intervals3m
Predictive Inference4m
Reading2 lecturas
Module Learning Objectivesm
Week 2 Lab Instructionsm
Quiz3 ejercicios de práctica
Week 2 Lab28m
Week 2 Practice Quiz20m
Week 2 Quiz40m
Semana
3
Horas para completar
8 horas para completar

Decision Making

In this module, we will discuss Bayesian decision making, hypothesis testing, and Bayesian testing. By the end of this week, you will be able to make optimal decisions based on Bayesian statistics and compare multiple hypotheses using Bayes Factors. ...
Reading
14 videos (Total: 75 min), 2 readings, 3 quizzes
Video14 videos
Losses and decision making3m
Working with loss functions6m
Minimizing expected loss for hypothesis testing5m
Posterior probabilities of hypotheses and Bayes factors6m
The Normal-Gamma Conjugate Family6m
Inference via Monte Carlo Sampling3m
Predictive Distributions and Prior Choice5m
Reference Priors7m
Mixtures of Conjugate Priors and MCMC6m
Hypothesis Testing: Normal Mean with Known Variance7m
Comparing Two Paired Means Using Bayes' Factors6m
Comparing Two Independent Means: Hypothesis Testing3m
Comparing Two Independent Means: What to Report?5m
Reading2 lecturas
Module Learning Objectivesm
Week 3 Lab Instructionsm
Quiz3 ejercicios de práctica
Week 3 Lab22m
Week 3 Practice Quiz16m
Week 3 Quiz40m
Semana
4
Horas para completar
8 horas para completar

Bayesian Regression

This week, we will look at Bayesian linear regressions and model averaging, which allows you to make inferences and predictions using several models. By the end of this week, you will be able to implement Bayesian model averaging, interpret Bayesian multiple linear regression and understand its relationship to the frequentist linear regression approach. ...
Reading
11 videos (Total: 72 min), 2 readings, 3 quizzes
Video11 videos
Bayesian simple linear regression8m
Checking for outliers4m
Bayesian multiple regression4m
Model selection criteria5m
Bayesian model uncertainty7m
Bayesian model averaging7m
Stochastic exploration8m
Priors for Bayesian model uncertainty8m
R demo: crime and punishment9m
Decisions under model uncertainty7m
Reading2 lecturas
Module Learning Objectivesm
Week 4 Lab Instructionsm
Quiz3 ejercicios de práctica
Week 4 Lab22m
Week 4 Practice Quiz20m
Week 4 Quiz40m
3.9
140 revisionesChevron Right
Dirección de la carrera

17%

comenzó una nueva carrera después de completar estos cursos
Beneficio de la carrera

83%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones

por RRSep 21st 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

por GHApr 10th 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Instructores

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science
Avatar

David Banks

Professor of the Practice
Statistical Science
Avatar

Colin Rundel

Assistant Professor of the Practice
Statistical Science
Avatar

Merlise A Clyde

Professor
Department of Statistical Science

Acerca de Duke University

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

Acerca del programa especializado Statistics with R

In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis. You will produce a portfolio of data analysis projects from the Specialization that demonstrates mastery of statistical data analysis from exploratory analysis to inference to modeling, suitable for applying for statistical analysis or data scientist positions....
Statistics with R

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • We assume you have knowledge equivalent to the prior courses in this specialization.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.