Acerca de este Curso
849,951 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Inglés (English)

Subtítulos: Chino (tradicional), Chino (simplificado), Coreano, Turco (Turkish), Inglés (English), Japonés...

Habilidades que obtendrás

Facial Recognition SystemTensorflowConvolutional Neural NetworkArtificial Neural Network

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Inglés (English)

Subtítulos: Chino (tradicional), Chino (simplificado), Coreano, Turco (Turkish), Inglés (English), Japonés...

Programa - Qué aprenderás en este curso

6 horas para completar

Foundations of Convolutional Neural Networks

Learn to implement the foundational layers of CNNs (pooling, convolutions) and to stack them properly in a deep network to solve multi-class image classification problems.

12 videos (Total 140 minutos), 3 quizzes
12 videos
Edge Detection Example11m
More Edge Detection7m
Strided Convolutions9m
Convolutions Over Volume10m
One Layer of a Convolutional Network16m
Simple Convolutional Network Example8m
Pooling Layers10m
CNN Example12m
Why Convolutions?9m
Yann LeCun Interview27m
1 ejercicio de práctica
The basics of ConvNets20m
5 horas para completar

Deep convolutional models: case studies

Learn about the practical tricks and methods used in deep CNNs straight from the research papers.

11 videos (Total 99 minutos), 2 quizzes
11 videos
Classic Networks18m
Why ResNets Work9m
Networks in Networks and 1x1 Convolutions6m
Inception Network Motivation10m
Inception Network8m
Using Open-Source Implementation4m
Transfer Learning8m
Data Augmentation9m
State of Computer Vision12m
1 ejercicio de práctica
Deep convolutional models20m
4 horas para completar

Object detection

Learn how to apply your knowledge of CNNs to one of the toughest but hottest field of computer vision: Object detection.

10 videos (Total 85 minutos), 2 quizzes
10 videos
Landmark Detection5m
Object Detection5m
Convolutional Implementation of Sliding Windows11m
Bounding Box Predictions14m
Intersection Over Union4m
Non-max Suppression8m
Anchor Boxes9m
YOLO Algorithm7m
(Optional) Region Proposals6m
1 ejercicio de práctica
Detection algorithms20m
5 horas para completar

Special applications: Face recognition & Neural style transfer

Discover how CNNs can be applied to multiple fields, including art generation and face recognition. Implement your own algorithm to generate art and recognize faces!

11 videos (Total 76 minutos), 3 quizzes
11 videos
One Shot Learning4m
Siamese Network4m
Triplet Loss15m
Face Verification and Binary Classification6m
What is neural style transfer?2m
What are deep ConvNets learning?7m
Cost Function3m
Content Cost Function3m
Style Cost Function13m
1D and 3D Generalizations9m
1 ejercicio de práctica
Special applications: Face recognition & Neural style transfer20m
2784 revisionesChevron Right


comenzó una nueva carrera después de completar estos cursos


consiguió un beneficio tangible en su carrera profesional gracias a este curso


consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Convolutional Neural Networks

por AGJan 13th 2019

Great course for kickoff into the world of CNN's. Gives a nice overview of existing architectures and certain applications of CNN's as well as giving some solid background in how they work internally.

por EBNov 3rd 2017

Wonderful course. Covers a wide array of immediately appealing subjects: from object detection to face recognition to neural style transfer, intuitively motivate relevant models like YOLO and ResNet.



Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University,, Ecole CentraleSupelec

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University,
Computer Science

Acerca de is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Acerca del programa especializado Aprendizaje profundo

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizaje profundo

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.