Chevron Left
Volver a Exploratory Data Analysis for Machine Learning

Opiniones y comentarios de aprendices correspondientes a Exploratory Data Analysis for Machine Learning por parte de Habilidades en redes de IBM

4.6
estrellas
858 calificaciones

Acerca del Curso

This first course in the IBM Machine Learning Professional Certificate introduces you to Machine Learning and the content of the professional certificate. In this course you will realize the importance of good, quality data. You will learn common techniques to retrieve your data, clean it, apply feature engineering, and have it ready for preliminary analysis and hypothesis testing. By the end of this course you should be able to: Retrieve data from multiple data sources: SQL, NoSQL databases, APIs, Cloud  Describe and use common feature selection and feature engineering techniques Handle categorical and ordinal features, as well as missing values Use a variety of techniques for detecting and dealing with outliers Articulate why feature scaling is important and use a variety of scaling techniques   Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience  with Machine Learning and Artificial Intelligence in a business setting.   What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Calculus, Linear Algebra, Probability, and Statistics....

Principales reseñas

AE

26 de sep. de 2021

Very detailed course of Exploratory Data Analysis for Machine learning. Ready to take the next step in data science or Machine learning, this is great course for taking you to the next level.

ML

21 de sep. de 2021

Excellent, very detailed. However, if the lessons can be expand for hypothesis testing and some of their common test like T test, Anova 1 and 2 way, chi square,..it would be better further.

Filtrar por:

26 - 50 de 205 revisiones para Exploratory Data Analysis for Machine Learning

por Zach S

22 de may. de 2021

por Abhinav S

10 de ene. de 2022

por SMRUTI R D

26 de jul. de 2021

por Hobbesian T

18 de jun. de 2022

por ulagaraja j

20 de ene. de 2022

por Takahide M

12 de jul. de 2022

por Nosaybeh A P

5 de feb. de 2022

por Abhinav M

25 de oct. de 2020

por Mohammad K K

7 de ago. de 2022

por Samik B

5 de jun. de 2022

por Sarath B S

26 de nov. de 2020

por Orah R O

22 de ene. de 2021

por Bishmer S

25 de ene. de 2021

por Chien N

16 de jun. de 2021

por Luis P S

17 de abr. de 2021

por ASIFIWE E

27 de sep. de 2021

por Minh L

22 de sep. de 2021

por Noor-ul-ain S

23 de nov. de 2021

por Ajay K S

16 de ago. de 2021

por VARUN B 2

10 de jun. de 2021

por Chris B (

2 de ago. de 2021

por Aman K

13 de ago. de 2021

por konutek

7 de dic. de 2020

por Aleksandr K

5 de dic. de 2020

por My B

31 de mar. de 2021