Chevron Left
Volver a Exploratory Data Analysis for Machine Learning

Opiniones y comentarios de aprendices correspondientes a Exploratory Data Analysis for Machine Learning por parte de Habilidades en redes de IBM

4.6
estrellas
868 calificaciones

Acerca del Curso

This first course in the IBM Machine Learning Professional Certificate introduces you to Machine Learning and the content of the professional certificate. In this course you will realize the importance of good, quality data. You will learn common techniques to retrieve your data, clean it, apply feature engineering, and have it ready for preliminary analysis and hypothesis testing. By the end of this course you should be able to: Retrieve data from multiple data sources: SQL, NoSQL databases, APIs, Cloud  Describe and use common feature selection and feature engineering techniques Handle categorical and ordinal features, as well as missing values Use a variety of techniques for detecting and dealing with outliers Articulate why feature scaling is important and use a variety of scaling techniques   Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience  with Machine Learning and Artificial Intelligence in a business setting.   What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Calculus, Linear Algebra, Probability, and Statistics....

Principales reseñas

AE

26 de sep. de 2021

Very detailed course of Exploratory Data Analysis for Machine learning. Ready to take the next step in data science or Machine learning, this is great course for taking you to the next level.

ML

21 de sep. de 2021

Excellent, very detailed. However, if the lessons can be expand for hypothesis testing and some of their common test like T test, Anova 1 and 2 way, chi square,..it would be better further.

Filtrar por:

76 - 100 de 210 revisiones para Exploratory Data Analysis for Machine Learning

por Roberto V

8 de abr. de 2021

por Pablo V

13 de may. de 2022

por Pablo A M

30 de may. de 2022

por Kashapov A I

3 de ago. de 2021

por Cihan K

5 de jun. de 2022

por Honglei Z

6 de abr. de 2022

por Aswin D

9 de sep. de 2021

por GARVIT R

4 de ago. de 2022

por KOUADIO A R

4 de ago. de 2021

por Virgilio N

23 de abr. de 2022

por serkan m

10 de abr. de 2021

por Eric N A

6 de mar. de 2022

por Andrian R

6 de jul. de 2021

por Marwan K

31 de oct. de 2021

por mehrdad s

21 de jul. de 2022

por Gianluca P

19 de mar. de 2021

por Diego A

30 de abr. de 2021

por Pierluigi A

9 de nov. de 2020

por Bernard F

29 de oct. de 2020

por Nicholas W T

29 de sep. de 2022

por DEVANI R

11 de mar. de 2022

por Ali G A H

5 de jul. de 2022

por Muna M

3 de sep. de 2022

por Sinan U

9 de oct. de 2021

por Rorisang S

1 de may. de 2021