Acerca de este Curso

5,456 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 8 horas para completar
Inglés (English)
Subtítulos: Inglés (English)
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 8 horas para completar
Inglés (English)
Subtítulos: Inglés (English)

ofrecido por

Placeholder

Universidad de California en San Diego

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

3 horas para completar

Week 1: Diagnostics for Data

3 horas para completar
6 videos (Total 49 minutos), 4 lecturas, 3 cuestionarios
6 videos
Motivation Behind the MSE8m
Regression Diagnostics: MSE and R²6m
Over- and Under-Fitting6m
Classification Diagnostics: Accuracy and Error11m
Classification Diagnostics: Precision and Recall12m
4 lecturas
Syllabus10m
Setting Up Your System10m
(Optional) Additional Resources and Recommended Readings10m
Course Materials10m
3 ejercicios de práctica
Review: Regression Diagnostics30m
Review: Classification Diagnostics30m
Diagnostics for Data30m
Semana
2

Semana 2

2 horas para completar

Week 2: Codebases, Regularization, and Evaluating a Model

2 horas para completar
4 videos (Total 35 minutos)
4 videos
Model Complexity and Regularization10m
Adding a Regularizer to our Model, and Evaluating the Regularized Model8m
Evaluating Classifiers for Ranking4m
4 ejercicios de práctica
Review: Setting Up a Codebase30m
Review: Regularization5m
Review: Evaluating a Model5m
Codebases, Regularization, and Evaluating a Model45m
Semana
3

Semana 3

2 horas para completar

Week 3: Validation and Pipelines

2 horas para completar
4 videos (Total 24 minutos)
4 videos
“Theorems” About Training, Testing, and Validation8m
Implementing a Regularization Pipeline in Python5m
Guidelines on the Implementation of Predictive Pipelines5m
3 ejercicios de práctica
Review: Validation30m
Review: Predictive Pipelines30m
Predictive Pipelines20m
Semana
4

Semana 4

1 hora para completar

Final Project

1 hora para completar
2 lecturas
2 lecturas
Project Description10m
Where to Find Datasets10m

Reseñas

Principales reseñas sobre MEANINGFUL PREDICTIVE MODELING

Ver todas las reseñas

Acerca de Programa especializado: Python Data Products for Predictive Analytics

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.