Acerca de este Curso
4.5
336 calificaciones
66 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 16 horas para completar

Sugerido: 4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Summary StatisticsTerm Frequency Inverse Document Frequency (TF-IDF)Microsoft ExcelRecommender Systems
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 16 horas para completar

Sugerido: 4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
1 hora para completar

Preface

This brief module introduces the topic of recommender systems (including placing the technology in historical context) and provides an overview of the structure and coverage of the course and specialization....
Reading
2 videos (Total 41 minutos), 1 reading
Video2 videos
Intro to Course and Specialization13m
Reading1 lectura
Notes on Course Design and Relationship to Prior Courses10m
Horas para completar
3 horas para completar

Introducing Recommender Systems

This module introduces recommender systems in more depth. It includes a detailed taxonomy of the types of recommender systems, and also includes tours of two systems heavily dependent on recommender technology: MovieLens and Amazon.com. There is an introductory assessment in the final lesson to ensure that you understand the core concepts behind recommendations before we start learning how to compute them....
Reading
9 videos (Total 147 minutos), 2 readings, 2 quizzes
Video9 videos
Preferences and Ratings17m
Predictions and Recommendations16m
Taxonomy of Recommenders I27m
Taxonomy of Recommenders II21m
Tour of Amazon.com21m
Recommender Systems: Past, Present and Future16m
Introducing the Honors Track7m
Honors: Setting up the development environment10m
Reading2 lecturas
About the Honors Track10m
Downloads and Resources10m
Quiz2 ejercicios de práctica
Closing Quiz: Introducing Recommender Systems20m
Honors Track Pre-Quiz2m
Semana
2
Horas para completar
7 horas para completar

Non-Personalized and Stereotype-Based Recommenders

In this module, you will learn several techniques for non- and lightly-personalized recommendations, including how to use meaningful summary statistics, how to compute product association recommendations, and how to explore using demographics as a means for light personalization. There is both an assignment (trying out these techniques in a spreadsheet) and a quiz to test your comprehension. ...
Reading
7 videos (Total 111 minutos), 5 readings, 9 quizzes
Video7 videos
Summary Statistics I16m
Summary Statistics II22m
Demographics and Related Approaches13m
Product Association Recommenders19m
Assignment #1 Intro Video14m
Assignment Intro: Programming Non-Personalized Recommenders17m
Reading5 lecturas
External Readings on Ranking and Scoring10m
Assignment 1 Instructions: Non-Personalized and Stereotype-Based Recommenders10m
Assignment Intro: Programming Non-Personalized Recommenders10m
LensKit Resources10m
Rating Data Information10m
Quiz8 ejercicios de práctica
Assignment #1: Response #1: Top Movies by Mean Rating10m
Assignment #1: Response #2: Top Movies by Count10m
Assignment #1: Response #3: Top Movies by Percent Liking10m
Assignment #1: Response #4: Association with Toy Story10m
Assignment #1: Response #5: Correlation with Toy Story10m
Assignment #1: Response #6: Male-Female Differences in Average Rating10m
Assignment #1: Response #7: Male-Female differences in Liking8m
Non-Personalized Recommenders20m
Semana
3
Horas para completar
3 horas para completar

Content-Based Filtering -- Part I

The next topic in this course is content-based filtering, a technique for personalization based on building a profile of personal interests. Divided over two weeks, you will learn and practice the basic techniques for content-based filtering and then explore a variety of advanced interfaces and content-based computational techniques being used in recommender systems. ...
Reading
8 videos (Total 156 minutos)
Video8 videos
TFIDF and Content Filtering24m
Content-Based Filtering: Deeper Dive26m
Entree Style Recommenders -- Robin Burke Interview13m
Case-Based Reasoning -- Interview with Barry Smyth13m
Dialog-Based Recommenders -- Interview with Pearl Pu21m
Search, Recommendation, and Target Audiences -- Interview with Sole Pera11m
Beyond TFIDF -- Interview with Pasquale Lops21m
Semana
4
Horas para completar
6 horas para completar

Content-Based Filtering -- Part II

The assessments for content-based filtering include an assignment where you compute three types of profile and prediction using a spreadsheet and a quiz on the topics covered. The assignment is in three parts -- a written assignment, a video intro, and a "quiz" where you provide answers from your work to be automatically graded....
Reading
2 videos (Total 26 minutos), 3 readings, 3 quizzes
Video2 videos
Honors: Intro to programming assignment10m
Reading3 lecturas
Content-Based Recommenders Spreadsheet Assignment (aka Assignment #2)20m
Tools for Content-Based Filtering10m
CBF Programming Intro10m
Quiz2 ejercicios de práctica
Assignment #2 Answer Form20m
Content-Based Filtering20m
Horas para completar
1 hora para completar

Course Wrap-up

We close this course with a set of mathematical notation that will be helpful as we move forward into a wider range of recommender systems (in later courses in this specialization). ...
Reading
2 videos (Total 45 minutos), 1 reading
Video2 videos
Psychology of Preference & Rating -- Interview with Martijn Willemsen31m
Reading1 lectura
Related Readings10m
4.5
66 revisionesChevron Right
Beneficio de la carrera

50%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones

por DPDec 8th 2017

Nice introduction to recommender systems for those who have never heard about it before. No complex mathematical formula (which can also be seen by some as a downside).

por IPSep 19th 2016

it's a fantastic course that gives you a good idea of what the objectives of recommender systems are and some intuition on the way how it can be accomplished.

Instructores

Avatar

Joseph A Konstan

Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering
Avatar

Michael D. Ekstrand

Assistant Professor
Dept. of Computer Science, Boise State University

Acerca de University of Minnesota

The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations....

Acerca del programa especializado Recommender Systems

This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative techniques. Designed to serve both the data mining expert and the data literate marketing professional, the courses offer interactive, spreadsheet-based exercises to master different algorithms along with an honors track where learners can go into greater depth using the LensKit open source toolkit. A Capstone Project brings together the course material with a realistic recommender design and analysis project....
Recommender Systems

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • This specialization is a substantial extension and update of our original introductory course. It involves about 60% new and extended lectures and mostly new assignments and assessments. This course specifically has added material on stereotyped and demographic recommenders and on advanced techniques in content-based recommendation.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.