Acerca de este Curso

19,765 vistas recientes

Resultados profesionales del estudiante

60%

comenzó una nueva carrera después de completar estos cursos

40%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

12%

consiguió un aumento de sueldo o ascenso

Certificado para compartir

Obtén un certificado al finalizar

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 16 horas para completar

Sugerido: 4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Summary StatisticsTerm Frequency Inverse Document Frequency (TF-IDF)Microsoft ExcelRecommender Systems

Resultados profesionales del estudiante

60%

comenzó una nueva carrera después de completar estos cursos

40%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

12%

consiguió un aumento de sueldo o ascenso

Certificado para compartir

Obtén un certificado al finalizar

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 16 horas para completar

Sugerido: 4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Calificación del contenidoThumbs Up90%(1,738 calificaciones)Info
Semana
1

Semana 1

1 hora para completar

Preface

1 hora para completar
2 videos (Total 41 minutos), 1 lectura
2 videos
Intro to Course and Specialization13m
1 lectura
Notes on Course Design and Relationship to Prior Courses10m
3 horas para completar

Introducing Recommender Systems

3 horas para completar
9 videos (Total 147 minutos), 2 lecturas, 2 cuestionarios
9 videos
Preferences and Ratings17m
Predictions and Recommendations16m
Taxonomy of Recommenders I27m
Taxonomy of Recommenders II21m
Tour of Amazon.com21m
Recommender Systems: Past, Present and Future16m
Introducing the Honors Track7m
Honors: Setting up the development environment10m
2 lecturas
About the Honors Track10m
Downloads and Resources10m
2 ejercicios de práctica
Closing Quiz: Introducing Recommender Systems20m
Honors Track Pre-Quiz2m
Semana
2

Semana 2

7 horas para completar

Non-Personalized and Stereotype-Based Recommenders

7 horas para completar
7 videos (Total 111 minutos), 5 lecturas, 9 cuestionarios
7 videos
Summary Statistics I16m
Summary Statistics II22m
Demographics and Related Approaches13m
Product Association Recommenders19m
Assignment #1 Intro Video14m
Assignment Intro: Programming Non-Personalized Recommenders17m
5 lecturas
External Readings on Ranking and Scoring10m
Assignment 1 Instructions: Non-Personalized and Stereotype-Based Recommenders10m
Assignment Intro: Programming Non-Personalized Recommenders10m
LensKit Resources10m
Rating Data Information10m
8 ejercicios de práctica
Assignment #1: Response #1: Top Movies by Mean Rating10m
Assignment #1: Response #2: Top Movies by Count10m
Assignment #1: Response #3: Top Movies by Percent Liking10m
Assignment #1: Response #4: Association with Toy Story10m
Assignment #1: Response #5: Correlation with Toy Story10m
Assignment #1: Response #6: Male-Female Differences in Average Rating10m
Assignment #1: Response #7: Male-Female differences in Liking8m
Non-Personalized Recommenders20m
Semana
3

Semana 3

3 horas para completar

Content-Based Filtering -- Part I

3 horas para completar
8 videos (Total 156 minutos)
8 videos
TFIDF and Content Filtering24m
Content-Based Filtering: Deeper Dive26m
Entree Style Recommenders -- Robin Burke Interview13m
Case-Based Reasoning -- Interview with Barry Smyth13m
Dialog-Based Recommenders -- Interview with Pearl Pu21m
Search, Recommendation, and Target Audiences -- Interview with Sole Pera11m
Beyond TFIDF -- Interview with Pasquale Lops21m
Semana
4

Semana 4

6 horas para completar

Content-Based Filtering -- Part II

6 horas para completar
2 videos (Total 26 minutos), 3 lecturas, 3 cuestionarios
2 videos
Honors: Intro to programming assignment10m
3 lecturas
Content-Based Recommenders Spreadsheet Assignment (aka Assignment #2)1h 20m
Tools for Content-Based Filtering10m
CBF Programming Intro10m
2 ejercicios de práctica
Assignment #2 Answer Form20m
Content-Based Filtering20m
1 hora para completar

Course Wrap-up

1 hora para completar
2 videos (Total 45 minutos), 1 lectura
2 videos
Psychology of Preference & Rating -- Interview with Martijn Willemsen31m
1 lectura
Related Readings10m

Revisiones

Principales revisiones sobre INTRODUCTION TO RECOMMENDER SYSTEMS: NON-PERSONALIZED AND CONTENT-BASED
Ver todos los comentarios

ofrecido por

Logotipo de Universidad de Minnesota

Universidad de Minnesota

Acerca de Programa especializado Sistemas de recomendación

A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project....
Sistemas de recomendación

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • This specialization is a substantial extension and update of our original introductory course. It involves about 60% new and extended lectures and mostly new assignments and assessments. This course specifically has added material on stereotyped and demographic recommenders and on advanced techniques in content-based recommendation.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.