Acerca de este Curso
23,370 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 25 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Social NetworkGame TheoryNetwork AnalysisNetwork Theory

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 25 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
3 horas para completar

Introduction, Empirical Background and Definitions

Examples of Social Networks and their Impact, Definitions, Measures and Properties: Degrees, Diameters, Small Worlds, Weak and Strong Ties, Degree Distributions...
12 videos (Total 118 minutos), 3 readings, 3 quizzes
12 videos
1.1: Introduction9m
1.2: Examples and Challenges 15m
1.2.5 Background Definitions and Notation (Basic - Skip if familiar 8:23)8m
1.3: Definitions and Notation 14m
1.4: Diameter 16m
1.5: Diameter and Trees 6m
1.6: Diameters of Random Graphs (Optional/Advanced 11:12)11m
1.7: Diameters in the World 6m
1.8: Degree Distributions 13m
1.9: Clustering 8m
1.10: Week 1 Wrap2m
3 lecturas
Syllabus10m
Slides from Lecture 1, with References10m
OPTIONAL - Advanced Problem Set 110m
3 ejercicios de práctica
Quiz Week 128m
Problem Set 112m
Optional: Empirical Analysis of Network Data using Gephi or Pajek8m
Semana
2
3 horas para completar

Background, Definitions, and Measures Continued

Homophily, Dynamics, Centrality Measures: Degree, Betweenness, Closeness, Eigenvector, and Katz-Bonacich. Erdos and Renyi Random Networks: Thresholds and Phase Transitions...
11 videos (Total 105 minutos), 3 readings, 3 quizzes
11 videos
2.2: Dynamics and Tie Strength 6m
2.3: Centrality Measures 14m
2.4: Centrality – Eigenvector Measures 13m
2.5a: Application - Centrality Measures 12m
2.5b: Application – Diffusion Centrality 6m
2.6: Random Networks 10m
2.7: Random Networks - Thresholds and Phase Transitions 7m
2.8: A Threshold Theorem (optional/advanced 13:00)13m
2.9: A Small World Model 7m
2.10 Week 2 Wrap3m
3 lecturas
Slides from Lecture 2, with references10m
OPTIONAL - Advanced Problem Set 210m
OPTIONAL - Solutions to Advanced PS 110m
3 ejercicios de práctica
Quiz Week 216m
Problem Set 210m
Optional: Empirical Analysis of Network Data6m
Semana
3
4 horas para completar

Random Networks

Poisson Random Networks, Exponential Random Graph Models, Growing Random Networks, Preferential Attachment and Power Laws, Hybrid models of Network Formation....
12 videos (Total 143 minutos), 3 readings, 4 quizzes
12 videos
3.2: Mean Field Approximations 8m
3.3: Preferential Attachment 10m
3.4: Hybrid Models 14m
3.5: Fitting Hybrid Models 17m
3.6: Block Models 9m
3.7: ERGMs 9m
3.8: Estimating ERGMs 15m
3.9: SERGMs 9m
3.10: SUGMs 6m
3.11: Estimating SUGMs (Optional/Advanced 21:03)21m
3.12: Week 3 Wrap3m
3 lecturas
Slides from Lecture 3, with references10m
OPTIONAL - Advanced Problem Set 310m
OPTIONAL - Solutions to Advanced PS 210m
4 ejercicios de práctica
Quiz Week 326m
Problem Set 36m
Optional: Empirical Analysis of Network Data4m
Optional: Using Statnet in R to Estimate an ERGM6m
Semana
4
5 horas para completar

Strategic Network Formation

Game Theoretic Modeling of Network Formation, The Connections Model, The Conflict between Incentives and Efficiency, Dynamics, Directed Networks, Hybrid Models of Choice and Chance....
15 videos (Total 209 minutos), 3 readings, 2 quizzes
15 videos
4.2: Pairwise Stability and Efficiency 15m
4.3: Connections Model 11m
4.4: Efficiency in the Connections Model (Optional/Advanced 12:41)12m
4.5: Pairwise Stability in the Connections Model 6m
4.6: Externalities and the Coauthor Model 11m
4.7: Network Formation and Transfers 16m
4.8: Heterogeneity in Strategic Models 13m
4.9: SUGMs and Strategic Network Formation (Optional/Advanced 13:47)13m
4.10: Pairwise Nash Stability (Optional/Advanced 11:34)11m
4.11: Dynamic Strategic Network Formation (Optional/Advanced 11:57)11m
4.12: Evolution and Stochastics (Optinoal/Advanced 16:05)16m
4.13: Directed Network Formation (Optional/Advanced 16:38)16m
4.14: Application Structural Model (Optional/Advanced 35:06)35m
4.15: Week 4 Wrap4m
3 lecturas
Slides from Lecture 4, with references10m
OPTIONAL - Advanced Problem Set 410m
OPTIONAL - Solutions to Advanced PS 310m
2 ejercicios de práctica
Quiz Week 436m
Problem Set 414m
4.8
87 revisionesChevron Right

Principales revisiones

por MRNov 2nd 2017

Really enjoyed this course. The professor is really good and covers quite a lot of ground during the lectures. Good way to get into complex networks! Probably gonna do some studying on my own now :)

por SWAug 9th 2016

Very good course on Social Networks, and also a hard one even for graduate level. Generally assignments are not too tough but fully understanding all the concepts take lots of extra readings.

Instructor

Avatar

Matthew O. Jackson

Professor
Economics

Acerca de Universidad de Stanford

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.