Acerca de este Certificado profesional
503,393 vistas recientes

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel principiante

Aprox. 3 meses para completar

Sugerido 12 horas/semana

Inglés (English)

Subtítulos: Inglés (English), Árabe (Arabic), Coreano, Alemán (German), Turco (Turkish)

Habilidades que obtendrás

Data ScienceMachine LearningPython ProgrammingData AnalysisData Visualization (DataViz)

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel principiante

Aprox. 3 meses para completar

Sugerido 12 horas/semana

Inglés (English)

Subtítulos: Inglés (English), Árabe (Arabic), Coreano, Alemán (German), Turco (Turkish)

Los estudiantes que toman este Professional Certificate son

  • Data Analysts
  • Data Scientists
  • Risk Managers
  • Business Analysts
  • Process Analysts

¿Qué es un certificado profesional?

Desarrolla las habilidades necesarias para completar el trabajo

Ya sea que desees comenzar una nueva carrera o cambiar tu carrera actual, los certificados profesionales de Coursera te ayudan a prepararte para el puesto. Aprende a tu propio ritmo, en el momento y el lugar que te resulten más cómodos. Inscríbete hoy mismo y descubre una nueva carrera con una prueba gratuita de 7 días. Puedes pausar tus clases o finalizar la suscripción en cualquier momento.

Proyectos prácticos

Aplica tus habilidades en proyectos prácticos y desarrolla una cartera que demuestre tu preparación para los trabajos a los posibles empleadores. Deberás terminar los proyectos correctamente para obtener tu certificado.

Obtén una credencial profesional

Cuando completas todos los cursos del programa, obtienes un certificado que puedes compartir con tu red profesional, así como acceso a los recursos de apoyo profesional que te ayudarán a comenzar tu nueva carrera. Muchos certificados profesionales tienen socios interesados en contratar personal que reconocen la credencial del certificado profesional, y otros pueden ayudarte en tu preparación para el examen de un certificado. Puedes ver más información en las páginas del certificado profesional particular en donde aplica.

how it works

Hay 9 cursos en este Certificado profesional

Curso1

What is Data Science?

4.7
18,431 calificaciones
2,993 revisiones
Curso2

Open Source tools for Data Science

4.6
10,696 calificaciones
1,321 revisiones
Curso3

Data Science Methodology

4.6
8,332 calificaciones
797 revisiones
Curso4

Python for Data Science and AI

4.6
9,041 calificaciones
1,226 revisiones

Instructores

Avatar

Joseph Santarcangelo

Ph.D., Data Scientist at IBM
IBM Developer Skills Network
Avatar

Alex Aklson

Ph.D., Data Scientist
IBM Developer Skills Network
Avatar

Rav Ahuja

AI and Data Science Program Director
IBM
Avatar

SAEED AGHABOZORGI

Ph.D., Sr. Data Scientist
IBM Developer Skills Network
Avatar

Polong Lin

Data Scientist
IBM Developer Skills Network

Acerca de IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando te suscribes a un curso que forma parte de un Certificado, te suscribes automáticamente a todo el Certificado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • The certificate requires completion of 9 courses. Each course typically contains 3-6 modules with an average effort of 2 to 4 hours per module. If learning part-time (e.g. 1 module per week), it would take 6 to 12 months to complete the entire certificate. If learning full-time (e.g. 1 module per day) the certificate can be completed in 2 to 3 months.

  • This certificate is open for anyone with any job and academic background. No prior computer programming experience is necessary, but is an asset. Familiarity working with computers, high school math, communication and presentation skills. For the last few courses knowledge of Calculus and Linear Algebra is an asset but not an absolute requirement.

  • Yes, it is highly recommended to take the courses in the order they are listed, as they progressively build on concepts taught in previous courses. For example the Data Visualization, Python and Machine Learning courses require knowledge of Python.

  • No, there is no University credits involved with taking these courses.

  • Become job ready for a career in Data Science. Develop practical skills using hands-on labs in Cloud environments, projects and captsones.

  • If you have already completed some of the courses in this Professional Certificate, either individually or as part of another specialization, they will be marked as "Complete". So you do not have to take those courses again and will be able to finish the Professional Certificate faster. You will only need to complete the courses that you have not yet completed.

  • Yes, absolutely. Any courses that you have already completed as part of that Specialization will be marked as "Complete". So you do not have to take those courses again and will be able to finish the Professional Certificate faster.

  • This Professional Certificate consists of 9 courses. The "Introduction to Data Science" Specialization has 4 courses, all of which are also included in this Professional Certificate.

    If you are unsure about your ability to commit to the level of effort and time required to complete this Professional Certificate, we recommend starting with the Introduction to Data Science Specialization, which has fewer courses. And if after earning the specialization certificate you are still determined to continue building your Data Science skills, you can then enroll for this Professional Certificate and then just complete the courses that are not in the specialization.

  • Yes, absolutely. Any courses that you have already completed as part of that Specialization will be marked as "Complete". So you do not have to take those courses again and will be able to finish this Professional Certificate faster.

  • As a Coursera learner who completes the Data Science Professional certificate, you will have special access to join IBM’s Talent Network. Our Talent Network members receive all of the tools you need to land a dream job with IBM - sent directly to your inbox! You will get job opportunities as soon as they are posted, recommendations to apply matched directly to your skills and interests, and tips and tricks to help you stand apart from the crowd.

  • As a Coursera learner who completes this Professional Certificate, you will have special access to join IBM’s Talent Network. Our Talent Network members receive all of the tools you need to land a dream job with IBM - sent directly to your inbox! You will get job opportunities as soon as they are posted, recommendations to apply matched directly to your skills and interests, and tips and tricks to help you stand apart from the crowd.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.