Acerca de este Programa Especializado
Cursos 100 % en línea

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Cronograma flexible

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Nivel principiante

Nivel principiante

Horas para completar

Aprox. 3 meses para completar

Sugerido 6 horas/semana
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Chino (simplificado), Georgiano, Estonio, Alemán (German), Tailandés, Japonés, Nepalés...

Habilidades que obtendrás

Ggplot2Data Visualization (DataViz)R ProgrammingObject-Oriented Programming (OOP)
Cursos 100 % en línea

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Cronograma flexible

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Nivel principiante

Nivel principiante

Horas para completar

Aprox. 3 meses para completar

Sugerido 6 horas/semana
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Chino (simplificado), Georgiano, Estonio, Alemán (German), Tailandés, Japonés, Nepalés...

Cómo funciona Programa Especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 5 cursos en este Programa Especializado

Curso1

The R Programming Environment

4.4
726 calificaciones
192 revisiones
This course provides a rigorous introduction to the R programming language, with a particular focus on using R for software development in a data science setting. Whether you are part of a data science team or working individually within a community of developers, this course will give you the knowledge of R needed to make useful contributions in those settings. As the first course in the Specialization, the course provides the essential foundation of R needed for the following courses. We cover basic R concepts and language fundamentals, key concepts like tidy data and related "tidyverse" tools, processing and manipulation of complex and large datasets, handling textual data, and basic data science tasks. Upon completing this course, learners will have fluency at the R console and will be able to create tidy datasets from a wide range of possible data sources....
Curso2

Advanced R Programming

4.3
334 calificaciones
85 revisiones
This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team....
Curso3

Building R Packages

4.2
150 calificaciones
39 revisiones
Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others. We cover R package development, writing good documentation and vignettes, writing robust software, cross-platform development, continuous integration tools, and distributing packages via CRAN and GitHub. Learners will produce R packages that satisfy the criteria for submission to CRAN....
Curso4

Building Data Visualization Tools

3.9
108 calificaciones
26 revisiones
The data science revolution has produced reams of new data from a wide variety of new sources. These new datasets are being used to answer new questions in way never before conceived. Visualization remains one of the most powerful ways draw conclusions from data, but the influx of new data types requires the development of new visualization techniques and building blocks. This course provides you with the skills for creating those new visualization building blocks. We focus on the ggplot2 framework and describe how to use and extend the system to suit the specific needs of your organization or team. Upon completing this course, learners will be able to build the tools needed to visualize a wide variety of data types and will have the fundamentals needed to address new data types as they come about....

Instructores

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brooke Anderson

Assistant Professor, Environmental & Radiological Health Sciences
Colorado State University

Acerca de Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • Este programa especializado no otorga crédito universitario, pero algunas universidades pueden aceptar los Certificados del programa especializado para el crédito. Consulta con tu institución para obtener más información.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • We strongly recommend that you take the courses in order.

  • You will be able to use R to create new data science tools as part of a team or a community of developers. You will be able to build R packages, develop custom visualizations, and apply modern software development tools to create reusable code for solving data science problems.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.