Acerca de este Curso
31,877 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.

Aprox. 12 horas para completar

Sugerido: 4-6 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Artificial Intelligence (AI)Machine LearningReinforcement LearningFunction ApproximationIntelligent Systems

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode.

Aprox. 12 horas para completar

Sugerido: 4-6 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
1 hora para completar

Welcome to the Final Capstone Course!

2 videos (Total 10 minutos), 2 lecturas
2 videos
Meet your instructors!8m
2 lecturas
Reinforcement Learning Textbook10m
Pre-requisites and Learning Objectives10m
Semana
2
1 hora para completar

Milestone 1: Formalize Word Problem as MDP

4 videos (Total 23 minutos)
4 videos
Andy Barto on What are Eligibility Traces and Why are they so named?9m
Let's Review: Markov Decision Processes6m
Let's Review: Examples of Episodic and Continuing Tasks3m
Semana
3
1 hora para completar

Milestone 2: Choosing The Right Algorithm

7 videos (Total 40 minutos), 1 cuestionario
7 videos
Let's Review: Expected Sarsa3m
Let's Review: What is Q-learning?3m
Let's Review: Average Reward- A New Way of Formulating Control Problems10m
Let's Review: Actor-Critic Algorithm5m
Csaba Szepesvari on Problem Landscape8m
Andy and Rich: Advice for Students5m
1 ejercicio de práctica
Choosing the Right Algorithm
Semana
4
1 hora para completar

Milestone 3: Identify Key Performance Parameters

4 videos (Total 25 minutos), 1 cuestionario
4 videos
Let's Review: Non-linear Approximation with Neural Networks4m
Drew Bagnell on System ID + Optimal Control6m
Susan Murphy on RL in Mobile Health7m
1 ejercicio de práctica
Impact of Parameter Choices in RL40m
4.4
5 revisionesChevron Right

Principales revisiones sobre A Complete Reinforcement Learning System (Capstone)

por SANov 9th 2019

Excellent final course for the specialization. Moon Lander project was informative and fun.

Instructores

Avatar

Martha White

Assistant Professor
Computing Science
Avatar

Adam White

Assistant Professor
Computing Science

Acerca de Universidad de Alberta

UAlberta is considered among the world’s leading public research- and teaching-intensive universities. As one of Canada’s top universities, we’re known for excellence across the humanities, sciences, creative arts, business, engineering and health sciences....

Acerca de Alberta Machine Intelligence Institute

The Alberta Machine Intelligence Institute (Amii) is home to some of the world’s top talent in machine intelligence. We’re an Alberta-based research institute that pushes the bounds of academic knowledge and guides business understanding of artificial intelligence and machine learning....

Acerca de Programa especializado Aprendizaje por refuerzo

The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI). Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end. By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science. The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more....
Aprendizaje por refuerzo

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.