Acerca de este Curso
69,511 vistas recientes

Curso 4 de 6 en

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 16 horas para completar

Sugerido: 25 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Curso 4 de 6 en

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 16 horas para completar

Sugerido: 25 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
5 horas para completar

Tensor and Datasets

6 videos (Total 44 minutos), 1 lectura, 11 cuestionarios
6 videos
1.1 Tensors 1D13m
1.2 Two-Dimensional Tensors9m
Differentiation in PyTorch5m
1.3 Simple Dataset7m
1.5 Dataset4m
1 lectura
Labs10m
5 ejercicios de práctica
1.1 Tensors 1D5m
1.2 Two-Dimensional Tensors5m
1.3 Derivatives in PyTorch5m
Simple Dataset5m
Datasets10m
Semana
2
2 horas para completar

Linear Regression

7 videos (Total 35 minutos), 10 cuestionarios
7 videos
2.1 Linear Regression Training3m
Loss3m
Gradient Descent4m
Cost3m
Linear Regression PyToch5m
PyTorch Linear Regression Training Slope and Bias5m
7 ejercicios de práctica
Prediction in One Dimension5m
Linear Regression Training5m
Loss5m
Gradient Descent5m
Cost5m
Training Parameters in PyTorch5m
PyTorch Linear Regression Training Slope and Bias5m
3 horas para completar

Linear Regression PyTorch Way

5 videos (Total 21 minutos), 8 cuestionarios
5 videos
Mini-Batch Gradient Descent3m
Optimization in PyTorch3m
Training, Validation and Test Split4m
Training, Validation and Test Split PyTorch3m
4 ejercicios de práctica
Quiz: Stochastic Gradient Descent5m
Mini-Batch Gradient Descent5m
3.3 Optimization in PyTorch5m
Training and Validation Data PyTorch5m
Semana
3
2 horas para completar

Multiple Input Output Linear Regression

4 videos (Total 18 minutos), 6 cuestionarios
4 videos
Multiple Linear Regression Training2m
Linear Regression Multiple Outputs5m
Multiple Output Linear Regression Training1m
2 ejercicios de práctica
Multiple Linear Regression Prediction5m
Multiple Output Linear Regression5m
2 horas para completar

Logistic Regression for Classification

4 videos (Total 31 minutos), 8 cuestionarios
4 videos
5.1 Logistic Regression: Prediction6m
Bernoulli Distribution and Maximum Likelihood Estimation5m
Logistic Regression Cross Entropy Loss10m
5 ejercicios de práctica
5.0 Linear Classifiers5m
5.0 Linear Classifiers5m
5.1 Logistic Regression: Prediction10m
Bernoulli Distribution and Maximum Likelihood Estimation5m
5.3 Logistic Regression Cross Entropy Loss10m
Semana
4
2 horas para completar

Softmax Rergresstion

3 videos (Total 18 minutos), 5 cuestionarios
3 videos
6.2 Softmax Function:Using Lines to Classify Data3m
Softmax PyTorch6m
3 ejercicios de práctica
6.1 Softmax Function:Using Lines to Classify Data5m
6.2 Softmax Prediction5m
6.3 Softmax PyTorch Quizz5m
3 horas para completar

Shallow Neural Networks

6 videos (Total 33 minutos), 12 cuestionarios
6 videos
More Hidden Neurons2m
Neural Networks with Multiple Dimensional Input5m
7.4 Multi-Class Neural Networks5m
7.5 Backpropagation5m
7.5 Activation Functions4m
6 ejercicios de práctica
Neural Networks5m
More Hidden Neurons 5m
Neural Networks with Multiple Dimensional Inputs5m
Multi-Class Neural Networks5m
Backpropagation5m
Activation Functions5m
4.7
1 revisionesChevron Right

Principales revisiones sobre Deep Neural Networks with PyTorch

por SKNov 17th 2019

Awesome! This course gives me the basic workflow for using machine learning technique in my research! The materials in the form of Jupyter lab really help!

Instructor

Avatar

Joseph Santarcangelo

Ph.D., Data Scientist at IBM
IBM Developer Skills Network

Acerca de IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Acerca de Certificado profesional de IBM AI Engineering

The rapid pace of innovation in Artificial Intelligence (AI) is creating enormous opportunity for transforming entire industries and our very existence. After competing this comprehensive 6 course Professional Certificate, you will get a practical understanding of Machine Learning and Deep Learning. You will master fundamental concepts of Machine Learning and Deep Learning, including supervised and unsupervised learning. You will utilize popular Machine Learning and Deep Learning libraries such as SciPy, ScikitLearn, Keras, PyTorch, and Tensorflow applied to industry problems involving object recognition and Computer Vision, image and video processing, text analytics, Natural Language Processing, recommender systems, and other types of classifiers. You will be able to scale Machine Learning on Big Data using Apache Spark. You will build, train, and deploy different types of Deep Architectures, including Convolutional Networks, Recurrent Networks, and Autoencoders. By the end of this Professional Certificate, you will have completed several projects showcasing your proficiency in Machine Learning and Deep Learning, and become armed with skills for a career as an AI Engineer....
IBM AI Engineering

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos del Certificado y te darán un certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.