Acerca de este Curso
14,195 vistas recientes

Curso 5 de 6 en

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 8 horas para completar

Sugerido: 4-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Curso 5 de 6 en

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 8 horas para completar

Sugerido: 4-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
4 horas para completar

Introduction

4 videos (Total 24 minutos), 1 lectura, 4 cuestionarios
4 videos
Introduction to TensorFlow7m
Introduction to Deep Learning2m
Deep Neural Networks11m
1 lectura
Syllabus10m
1 ejercicio de práctica
Deep Neural Networks and TensorFlow30m
Semana
2
3 horas para completar

Supervised Learning Models

3 videos (Total 22 minutos), 3 cuestionarios
3 videos
Convolutional Neural Networks (CNNs) for Classification4m
Convolutional Neural Networks (CNNs) Architecture13m
1 ejercicio de práctica
Convolutional Neural Networks30m
Semana
3
3 horas para completar

Supervised Learning Models (Cont'd)

4 videos (Total 22 minutos), 3 cuestionarios
4 videos
Recurrent Neural Networks (RNNs)5m
The Long Short Term Memory (LSTM) Model5m
Language Modelling7m
1 ejercicio de práctica
Recurrent Neural Networks30m
Semana
4
3 horas para completar

Unsupervised Deep Learning Models

2 videos (Total 10 minutos), 3 cuestionarios
2 videos
Restricted Boltzmann Machines (RBMs)5m
1 ejercicio de práctica
Restricted Boltzmann Machines30m
4.2
4 revisionesChevron Right

Principales revisiones sobre Building Deep Learning Models with TensorFlow

por LDNov 6th 2019

course needed to be updated for labs. Now Google moved to Tensorflow 2.0 this year.

Instructor

Avatar

Alex Aklson

Ph.D., Data Scientist
IBM Developer Skills Network

Acerca de IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Acerca de Certificado profesional de IBM AI Engineering

The rapid pace of innovation in Artificial Intelligence (AI) is creating enormous opportunity for transforming entire industries and our very existence. After competing this comprehensive 6 course Professional Certificate, you will get a practical understanding of Machine Learning and Deep Learning. You will master fundamental concepts of Machine Learning and Deep Learning, including supervised and unsupervised learning. You will utilize popular Machine Learning and Deep Learning libraries such as SciPy, ScikitLearn, Keras, PyTorch, and Tensorflow applied to industry problems involving object recognition and Computer Vision, image and video processing, text analytics, Natural Language Processing, recommender systems, and other types of classifiers. You will be able to scale Machine Learning on Big Data using Apache Spark. You will build, train, and deploy different types of Deep Architectures, including Convolutional Networks, Recurrent Networks, and Autoencoders. By the end of this Professional Certificate, you will have completed several projects showcasing your proficiency in Machine Learning and Deep Learning, and become armed with skills for a career as an AI Engineer....
IBM AI Engineering

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos del Certificado y te darán un certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.