Acerca de este Curso

68,411 vistas recientes

Certificado para compartir

Obtén un certificado al finalizar

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Completion of the first two courses in this specialization; high school-level algebra

Aprox. 15 horas para completar

Inglés (English)

Subtítulos: Inglés (English), Coreano

Habilidades que obtendrás

Bayesian StatisticsPython ProgrammingStatistical Modelstatistical regression

Certificado para compartir

Obtén un certificado al finalizar

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Completion of the first two courses in this specialization; high school-level algebra

Aprox. 15 horas para completar

Inglés (English)

Subtítulos: Inglés (English), Coreano

ofrecido por

Logotipo de Universidad de Míchigan

Universidad de Míchigan

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

3 horas para completar

WEEK 1 - OVERVIEW & CONSIDERATIONS FOR STATISTICAL MODELING

3 horas para completar
8 videos (Total 73 minutos), 6 lecturas, 1 cuestionario
8 videos
Fitting Statistical Models to Data with Python Guidelines5m
What Do We Mean by Fitting Models to Data?18m
Types of Variables in Statistical Modeling13m
Different Study Designs Generate Different Types of Data: Implications for Modeling9m
Objectives of Model Fitting: Inference vs. Prediction11m
Plotting Predictions and Prediction Uncertainty8m
Python Statistics Landscape2m
6 lecturas
Course Syllabus5m
Meet the Course Team!10m
Help Us Learn More About You!10m
About Our Datasets2m
Mixed effects models: Is it time to go Bayesian by default?15m
Python Statistics Landscape1m
1 ejercicio de práctica
Week 1 Assessment15m
Semana
2

Semana 2

5 horas para completar

WEEK 2 - FITTING MODELS TO INDEPENDENT DATA

5 horas para completar
6 videos (Total 85 minutos), 4 lecturas, 3 cuestionarios
6 videos
Linear Regression Inference15m
Interview: Causation vs Correlation18m
Logistic Regression Introduction15m
Logistic Regression Inference7m
NHANES Case Study Tutorial (Linear and Logistic Regression)17m
4 lecturas
Linear Regression Models: Notation, Parameters, Estimation Methods30m
Try It Out: Continuous Data Scatterplot App15m
Importance of Data Visualization: The Datasaurus Dozen10m
Logistic Regression Models: Notation, Parameters, Estimation Methods30m
3 ejercicios de práctica
Linear Regression Quiz20m
Logistic Regression Quiz15m
Week 2 Python Assessment20m
Semana
3

Semana 3

4 horas para completar

WEEK 3 - FITTING MODELS TO DEPENDENT DATA

4 horas para completar
8 videos (Total 121 minutos), 2 lecturas, 2 cuestionarios
8 videos
Multilevel Linear Regression Models21m
Multilevel Logistic Regression models14m
Practice with Multilevel Modeling: The Cal Poly App12m
What are Marginal Models and Why Do We Fit Them?13m
Marginal Linear Regression Models19m
Marginal Logistic Regression11m
NHANES Case Study Tutorial (Marginal and Multilevel Regression)10m
2 lecturas
Visualizing Multilevel Models10m
Likelihood Ratio Tests for Fixed Effects and Variance Components10m
2 ejercicios de práctica
Name That Model15m
Week 3 Python Assessment20m
Semana
4

Semana 4

3 horas para completar

WEEK 4: Special Topics

3 horas para completar
6 videos (Total 105 minutos), 3 lecturas, 1 cuestionario
6 videos
Bayesian Approaches to Statistics and Modeling15m
Bayesian Approaches Case Study: Part I13m
Bayesian Approaches Case Study: Part II19m
Bayesian Approaches Case Study - Part III23m
Bayesian in Python19m
3 lecturas
Other Types of Dependent Variables20m
Optional: A Visual Introduction to Machine Learning20m
Course Feedback10m
1 ejercicio de práctica
Week 4 Python Assessment20m

Acerca de Programa especializado: Statistics with Python

This specialization is designed to teach learners beginning and intermediate concepts of statistical analysis using the Python programming language. Learners will learn where data come from, what types of data can be collected, study data design, data management, and how to effectively carry out data exploration and visualization. They will be able to utilize data for estimation and assessing theories, construct confidence intervals, interpret inferential results, and apply more advanced statistical modeling procedures. Finally, they will learn the importance of and be able to connect research questions to the statistical and data analysis methods taught to them....
Statistics with Python

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • Si estás suscrito, obtienes una prueba gratis de 7 días, que podrás cancelar cuando desees sin ningún tipo de penalidad. Una vez transcurrido ese tiempo, no realizamos reembolsos. No obstante, puedes cancelar tu suscripción cuando quieras. Consulta nuestra política completa de reembolsos.

  • Sí, Coursera ofrece ayuda económica a los estudiantes que no pueden pagar la tarifa. Solicítala haciendo clic en el enlace de Ayuda económica que está debajo del botón “Inscribirse” a la izquierda. Se te pedirá que completes una solicitud. Recibirás una notificación en caso de que se apruebe. Deberás completar este paso para cada uno de los cursos que forman parte del Programa especializado, incluido el proyecto final. Obtén más información.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.