Coursera
Explorar
  • Explorar
  • Buscar
  • For Enterprise
  • Inicia Sesión
  • Regístrarse

Dealing With Missing Data

Un vistazoProgramaPreguntas FrecuentesCreadoresTarifaCalificaciones y revisiones

InicioCiencia de DatosAnálisis de Datos

Dealing With Missing Data

Universidad de Maryland en College Park

Acerca de este curso: This course will cover the steps used in weighting sample surveys, including methods for adjusting for nonresponse and using data external to the survey for calibration. Among the techniques discussed are adjustments using estimated response propensities, poststratification, raking, and general regression estimation. Alternative techniques for imputing values for missing items will be discussed. For both weighting and imputation, the capabilities of different statistical software packages will be covered, including R®, Stata®, and SAS®.

Para quién es esta clase: This course is aimed at undergraduates, graduate students, and working professionals who have an interest and need in preparing survey data for analysis and distribution to data users.


Creada por:  Universidad de Maryland en College Park
Universidad de Maryland en College Park

  • Richard Valliant, Ph.D.

    Enseñado por:  Richard Valliant, Ph.D., Research Professor

    Joint Program in Survey Methodology
Información básica
Curso 5 de 7 en Survey Data Collection and Analytics Specialization
Compromiso4 weeks of study, 1-2 hours/week
Idioma
English
Cómo aprobarAprueba todas las tareas calificadas para completar el curso.
Calificaciones del usuario
3.8 estrellas
Calificación promedio del usuario 3.8Ve los que los estudiantes dijeron
Programa
SEMANA 1
General Steps in Weighting
Weights are used to expand a sample to a population. To accomplish this, the weights may correct for coverage errors in the sampling frame, adjust for nonresponse, and reduce variances of estimators by incorporating covariates. The series of steps needed to do this are covered in Module 1.
7 videos, 7 readings
  1. Vídeo: Introduction
  2. Reading: Class notes + additional reading
  3. Vídeo: Quantities to Estimate
  4. Reading: Class notes
  5. Vídeo: Goals of Estimation
  6. Reading: Class Notes
  7. Vídeo: Statistical Interpretation of Estimates
  8. Reading: Class Notes
  9. Vídeo: Coverage Problems
  10. Reading: Class Notes
  11. Vídeo: Improving Precision
  12. Reading: Class Notes
  13. Vídeo: Effects of Weighting on SEs
  14. Reading: Class Notes
Calificado: Introductory quiz on weights
Calificado: Quantities
Calificado: Goals
Calificado: Interpretation
Calificado: Coverage
Calificado: Improving precision
Calificado: Effects on SEs
SEMANA 2
Specific Steps
Specific steps in weighting include computing base weights, adjusting if there are cases whose eligibility we are unsure of, adjusting for nonresponse, and using covariates to calibrate the sample to external population controls. We flesh out the general steps with specific details here.
6 videos, 6 readings
  1. Vídeo: Overview
  2. Reading: Class Notes
  3. Vídeo: Base Weights
  4. Reading: Class Notes
  5. Vídeo: Nonresponse Adjustments
  6. Reading: Class Notes
  7. Vídeo: Response Propensities
  8. Reading: Class Notes
  9. Vídeo: Tree algorithms
  10. Reading: Class Notes
  11. Vídeo: Calibration
  12. Reading: Class Notes
Calificado: Overview
Calificado: Base weights
Calificado: Nonresponse
Calificado: Trees
Calificado: Calibration
SEMANA 3
Implementing the Steps
Software is critical to implementing the steps, but the R system is an excellent source of free routines. This module covers several R packages, including sampling, survey, and PracTools that will select samples and compute weights.
6 videos, 5 readings, 3 practice quizzes
  1. Vídeo: Software
  2. Reading: Class Notes
  3. Vídeo: Base Weights
  4. Reading: Class Notes + Software
  5. Vídeo: More on Base Weights
  6. Reading: Class Notes
  7. Practice Quiz: Quiz on base weights
  8. Vídeo: Nonresponse Adjustments
  9. Reading: Class Notes + Software for propensity classes
  10. Practice Quiz: Quiz on nonresponse adjustments
  11. Vídeo: Examples of Calibration
  12. Vídeo: Software for Poststratification
  13. Reading: Class Notes + Software for calibration
  14. Practice Quiz: Quiz on calibration and poststratification
Calificado: Software
SEMANA 4
Imputing for Missing Items
In most surveys there will be items for which respondents do not provide information, even though the respondent completed enough of the data collection instrument to be considered "complete". If only the cases with all items present are retained when fitting a model, quite a few cases may be excluded from the analysis. Imputing for the missing items avoids dropping the missing cases. We cover methods of doing the imputing and of reflecting the effects of imputations on standard errors in this module.
6 videos, 5 readings
  1. Vídeo: Reasons for Imputation
  2. Reading: Class Notes
  3. Vídeo: Means and hotdeck
  4. Reading: Class Notes
  5. Vídeo: Regression Imputation
  6. Reading: Class Notes
  7. Vídeo: Effect on Variances
  8. Reading: Class Notes
  9. Vídeo: mice R package
  10. Vídeo: mice example
  11. Reading: Class Notes + mice R package
Calificado: Reasons for imputing
Calificado: Means and hot deck
Calificado: Regression imputation
Calificado: Effects on variances
Calificado: Imputation software
Summary of Course 5
We briefly summarize the methods of weighting and imputation that were covered in Course 5.
1 video, 1 reading
  1. Vídeo: Summary
  2. Reading: Class Notes

Preguntas Frecuentes
Cómo funciona
Coursework
Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from Your Peers
Help from Your Peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates
Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

Creadores
Universidad de Maryland en College Park
The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, three Pulitzer Prize winners, 47 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion fundraising campaign.
Tarifa
Comprar curso
Accede a los materiales del curso

Disponible

Accede a los materiales con calificación

Disponible

Recibe una calificación final

Disponible

Obtén un Certificado de curso para compartir

Disponible

Calificaciones y revisiones
Calificado 3.8 de 5 59 calificaciones
Reni Amelia

Prof. Richard Valliant, Ph.D. clearly enough explain all of these course materials. I will use these materials to dealing missing data on our census or survey. I believe that these materials were very helpful for me and my agency.

Thank you very much for all of this course.

Anna Bellido Rivas

Great course!

HE

This is a higher level course. Good for beginners.

Mohammad Morshedloo

This course quite help to get as much reliable data as possible for any survey.



También te podría gustar
University of Michigan
Sampling People, Networks and Records
1 course
University of Michigan
Sampling People, Networks and Records
Ver curso
University of Michigan
Data Collection: Online, Telephone and Face-to-face
1 course
University of Michigan
Data Collection: Online, Telephone and Face-to-face
Ver curso
Universidad de Maryland en College Park
Framework for Data Collection and Analysis
1 course
Universidad de Maryland en College Park
Framework for Data Collection and Analysis
Ver curso
Universidad de Maryland en College Park
Combining and Analyzing Complex Data
1 course
Universidad de Maryland en College Park
Combining and Analyzing Complex Data
Ver curso
University of Michigan
Questionnaire Design for Social Surveys
1 course
University of Michigan
Questionnaire Design for Social Surveys
Ver curso
Coursera
Coursera brinda acceso universal a la mejor educación del mundo, al asociarse con las mejores universidades y organizaciones, para ofrecer cursos en línea.
© 2018 Coursera Inc. Todos los derechos reservados.
Descargar en la App StoreConsíguelo en Google Play
  • Coursera
  • Acerca de
  • Liderazgo
  • Empleo
  • Catálogo
  • Certificados
  • Grados
  • Para negocios
  • For Government
  • Comunidad
  • instituciones
  • Mentores
  • Traductores
  • Desarrolladores
  • Probador beta
  • Conectar
  • Blog
  • Facebook
  • LinkedIn
  • Twitter
  • Google+
  • Blog de Tecnología
  • Más
  • Términos
  • Privacidad
  • Ayuda
  • Accesibilidad
  • Prensa
  • Contacto
  • Directorio
  • Afiliados