Acerca de este Curso
77,471 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 30 horas para completar

Inglés (English)

Subtítulos: Inglés (English)
User
Los estudiantes que toman este Course son
  • Data Scientists
  • Machine Learning Engineers
  • Biostatisticians
  • Research Assistants
  • Researchers

Habilidades que obtendrás

Bayesian NetworkGraphical ModelMarkov Random Field
User
Los estudiantes que toman este Course son
  • Data Scientists
  • Machine Learning Engineers
  • Biostatisticians
  • Research Assistants
  • Researchers

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 30 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
1 hora para completar

Introduction and Overview

4 videos (Total 35 minutos), 1 cuestionario
4 videos
Overview and Motivation19m
Distributions4m
Factors6m
1 ejercicio de práctica
Basic Definitions8m
10 horas para completar

Bayesian Network (Directed Models)

15 videos (Total 190 minutos), 6 lecturas, 4 cuestionarios
15 videos
Reasoning Patterns9m
Flow of Probabilistic Influence14m
Conditional Independence12m
Independencies in Bayesian Networks18m
Naive Bayes9m
Application - Medical Diagnosis9m
Knowledge Engineering Example - SAMIAM14m
Basic Operations 13m
Moving Data Around 16m
Computing On Data 13m
Plotting Data 9m
Control Statements: for, while, if statements 12m
Vectorization 13m
Working on and Submitting Programming Exercises 3m
6 lecturas
Setting Up Your Programming Assignment Environment10m
Installing Octave/MATLAB on Windows10m
Installing Octave/MATLAB on Mac OS X (10.10 Yosemite and 10.9 Mavericks)10m
Installing Octave/MATLAB on Mac OS X (10.8 Mountain Lion and Earlier)10m
Installing Octave/MATLAB on GNU/Linux10m
More Octave/MATLAB resources10m
3 ejercicios de práctica
Bayesian Network Fundamentals6m
Bayesian Network Independencies10m
Octave/Matlab installation2m
Semana
2
1 hora para completar

Template Models for Bayesian Networks

4 videos (Total 66 minutos), 1 cuestionario
4 videos
Temporal Models - DBNs23m
Temporal Models - HMMs12m
Plate Models20m
1 ejercicio de práctica
Template Models20m
11 horas para completar

Structured CPDs for Bayesian Networks

4 videos (Total 49 minutos), 3 cuestionarios
4 videos
Tree-Structured CPDs14m
Independence of Causal Influence13m
Continuous Variables13m
2 ejercicios de práctica
Structured CPDs8m
BNs for Genetic Inheritance PA Quiz22m
Semana
3
17 horas para completar

Markov Networks (Undirected Models)

7 videos (Total 106 minutos), 3 cuestionarios
7 videos
General Gibbs Distribution15m
Conditional Random Fields22m
Independencies in Markov Networks4m
I-maps and perfect maps20m
Log-Linear Models22m
Shared Features in Log-Linear Models8m
2 ejercicios de práctica
Markov Networks8m
Independencies Revisited6m
Semana
4
21 horas para completar

Decision Making

3 videos (Total 61 minutos), 3 cuestionarios
3 videos
Utility Functions18m
Value of Perfect Information17m
2 ejercicios de práctica
Decision Theory8m
Decision Making PA Quiz18m
4.7
246 revisionesChevron Right

23%

comenzó una nueva carrera después de completar estos cursos

22%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

11%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Probabilistic Graphical Models 1: Representation

por STJul 13th 2017

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

por CMOct 23rd 2017

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

Instructor

Avatar

Daphne Koller

Professor
School of Engineering

Acerca de Universidad de Stanford

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

Acerca de Programa especializado Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems....
Probabilistic Graphical Models

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • Apply the basic process of representing a scenario as a Bayesian network or a Markov network

    Analyze the independence properties implied by a PGM, and determine whether they are a good match for your distribution

    Decide which family of PGMs is more appropriate for your task

    Utilize extra structure in the local distribution for a Bayesian network to allow for a more compact representation, including tree-structured CPDs, logistic CPDs, and linear Gaussian CPDs

    Represent a Markov network in terms of features, via a log-linear model

    Encode temporal models as a Hidden Markov Model (HMM) or as a Dynamic Bayesian Network (DBN)

    Encode domains with repeating structure via a plate model

    Represent a decision making problem as an influence diagram, and be able to use that model to compute optimal decision strategies and information gathering strategies

    Honors track learners will be able to apply these ideas for complex, real-world problems

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.