Acerca de este Curso
14,269 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 23 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

InferenceGibbs SamplingMarkov Chain Monte Carlo (MCMC)Belief Propagation

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 23 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

25 minutos para completar

Inference Overview

This module provides a high-level overview of the main types of inference tasks typically encountered in graphical models: conditional probability queries, and finding the most likely assignment (MAP inference).

2 videos (Total 25 minutos)
2 videos
Overview: MAP Inference9m
1 hora para completar

Variable Elimination

This module presents the simplest algorithm for exact inference in graphical models: variable elimination. We describe the algorithm, and analyze its complexity in terms of properties of the graph structure.

4 videos (Total 56 minutos), 1 quiz
4 videos
Complexity of Variable Elimination12m
Graph-Based Perspective on Variable Elimination15m
Finding Elimination Orderings11m
1 ejercicio de práctica
Variable Elimination18m
18 horas para completar

Belief Propagation Algorithms

This module describes an alternative view of exact inference in graphical models: that of message passing between clusters each of which encodes a factor over a subset of variables. This framework provides a basis for a variety of exact and approximate inference algorithms. We focus here on the basic framework and on its instantiation in the exact case of clique tree propagation. An optional lesson describes the loopy belief propagation (LBP) algorithm and its properties.

9 videos (Total 150 minutos), 3 quizzes
9 videos
Properties of Cluster Graphs15m
Properties of Belief Propagation9m
Clique Tree Algorithm - Correctness18m
Clique Tree Algorithm - Computation16m
Clique Trees and Independence15m
Clique Trees and VE16m
BP In Practice15m
Loopy BP and Message Decoding21m
2 ejercicios de práctica
Message Passing in Cluster Graphs10m
Clique Tree Algorithm10m
1 hora para completar

MAP Algorithms

This module describes algorithms for finding the most likely assignment for a distribution encoded as a PGM (a task known as MAP inference). We describe message passing algorithms, which are very similar to the algorithms for computing conditional probabilities, except that we need to also consider how to decode the results to construct a single assignment. In an optional module, we describe a few other algorithms that are able to use very different techniques by exploiting the combinatorial optimization nature of the MAP task.

5 videos (Total 74 minutos), 1 quiz
5 videos
Finding a MAP Assignment3m
Tractable MAP Problems15m
Dual Decomposition - Intuition17m
Dual Decomposition - Algorithm16m
1 ejercicio de práctica
MAP Message Passing4m
14 horas para completar

Sampling Methods

In this module, we discuss a class of algorithms that uses random sampling to provide approximate answers to conditional probability queries. Most commonly used among these is the class of Markov Chain Monte Carlo (MCMC) algorithms, which includes the simple Gibbs sampling algorithm, as well as a family of methods known as Metropolis-Hastings.

5 videos (Total 100 minutos), 3 quizzes
5 videos
Markov Chain Monte Carlo14m
Using a Markov Chain15m
Gibbs Sampling19m
Metropolis Hastings Algorithm27m
2 ejercicios de práctica
Sampling Methods14m
Sampling Methods PA Quiz8m
26 minutos para completar

Inference in Temporal Models

In this brief lesson, we discuss some of the complexities of applying some of the exact or approximate inference algorithms that we learned earlier in this course to dynamic Bayesian networks.

1 video (Total 20 minutos), 1 quiz
1 ejercicio de práctica
Inference in Temporal Models6m
54 revisionesChevron Right


comenzó una nueva carrera después de completar estos cursos


consiguió un beneficio tangible en su carrera profesional gracias a este curso


consiguió un aumento de sueldo o ascenso

Principales revisiones

por LLMar 12th 2017

Thanks a lot for professor D.K.'s great course for PGM inference part. Really a very good starting point for PGM model and preparation for learning part.

por YPMay 29th 2017

I learned pretty much from this course. It answered my quandaries from the representation course, and as well deepened my understanding of PGM.



Daphne Koller

School of Engineering

Acerca de Universidad de Stanford

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

Acerca del programa especializado Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems....
Probabilistic Graphical Models

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • Execute the basic steps of a variable elimination or message passing algorithm

    Understand how properties of the graph structure influence the complexity of exact inference, and thereby estimate whether exact inference is likely to be feasible

    Go through the basic steps of an MCMC algorithm, both Gibbs sampling and Metropolis Hastings

    Understand how properties of the PGM influence the efficacy of sampling methods, and thereby estimate whether MCMC algorithms are likely to be effective

    Design Metropolis Hastings proposal distributions that are more likely to give good results

    Compute a MAP assignment by exact inference

    Honors track learners will be able to implement message passing algorithms and MCMC algorithms, and apply them to a real world problem

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.