Acerca de este Curso
4.7
2,584 calificaciones
581 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel principiante

Nivel principiante

Horas para completar

Aprox. 21 horas para completar

Sugerido: 5 weeks of study, 5-7 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Coreano

Habilidades que obtendrás

StatisticsR ProgrammingRstudioExploratory Data Analysis
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel principiante

Nivel principiante

Horas para completar

Aprox. 21 horas para completar

Sugerido: 5 weeks of study, 5-7 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Coreano

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
12 minutos para completar

About Introduction to Probability and Data

<p>This course introduces you to sampling and exploring data, as well as basic probability theory. You will examine various types of sampling methods and discuss how such methods can impact the utility of a data analysis. The concepts in this module will serve as building blocks for our later courses.<p>Each lesson comes with a set of learning objectives that will be covered in a series of short videos. Supplementary readings and practice problems will also be suggested from <a href="https://leanpub.com/openintro-statistics/" target="_blank">OpenIntro Statistics, 3rd Edition</a> (a free online introductory statistics textbook, that I co-authored). There will be weekly quizzes designed to assess your learning and mastery of the material covered that week in the videos. In addition, each week will also feature a lab assignment, in which you will use R to apply what you are learning to real data. There will also be a data analysis project designed to enable you to answer research questions of your own choosing.<p>Since this is a Coursera course, you are welcome to participate as much or as little as you’d like, though I hope that you will begin by participating fully. One of the most rewarding aspects of a Coursera course is participation in forum discussions about the course materials. Please take advantage of other students' feedback and insight and contribute your own perspective where you see fit to do so. You can also check out the <a href="https://www.coursera.org/learn/probability-intro/resources/crMc4" target="_blank">resource page</a> listing useful resources for this course. <p>Thank you for joining the Introduction to Probability and Data community! Say hello in the Discussion Forums. We are looking forward to your participation in the course.</p>...
Reading
1 video (Total 2 min), 1 reading
Reading1 lectura
More about Introduction to Probability and Data10m
Horas para completar
2 horas para completar

Introduction to Data

<p>Welcome to Introduction to Probability and Data! I hope you are just as excited about this course as I am! In the next five weeks, we will learn about designing studies, explore data via numerical summaries and visualizations, and learn about rules of probability and commonly used probability distributions. If you have any questions, feel free to post them on <a href="https://www.coursera.org/learn/probability-intro/module/rQ9Al/discussions?sort=lastActivityAtDesc&page=1" target="_blank"><b>this module's forum</b></a> and discuss with your peers! To get started, view the <a href="https://www.coursera.org/learn/probability-intro/supplement/rooeY/lesson-learning-objectives" target="_blank"><b>learning objectives</b></a> of Lesson 1 in this module.</p>...
Reading
7 videos (Total 30 min), 5 readings, 3 quizzes
Video7 videos
Data Basics5m
Observational Studies & Experiments4m
Sampling and sources of bias8m
Experimental Design2m
(Spotlight) Random Sample Assignment3m
DataCamp Instructions2m
Reading5 lecturas
Lesson Learning Objectives10m
Suggested Readings and Practice10m
About Lesson Choices (Read Before Selection)10m
Week 1 Lab Instructions (RStudio)10m
Week 1 Lab Instructions (DataCamp)10m
Quiz3 ejercicios de práctica
Week 1 Practice Quiz10m
Week 1 Quiz14m
Week 1 Lab: Introduction to R and RStudio16m
Semana
2
Horas para completar
3 horas para completar

Exploratory Data Analysis and Introduction to Inference

<p>Welcome to Week 2 of Introduction to Probability and Data! Hope you enjoyed materials from Week 1. This week we will delve into numerical and categorical data in more depth, and introduce inference. </p>...
Reading
7 videos (Total 46 min), 5 readings, 3 quizzes
Video7 videos
Measures of Center4m
Measures of Spread6m
Robust Statistics1m
Transforming Data3m
Exploring Categorical Variables8m
Introduction to Inference12m
Reading5 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Suggested Readings and Practice10m
Week 2 Lab Instructions (RStudio)10m
Week 2 Lab Instructions (DataCamp)10m
Quiz3 ejercicios de práctica
Week 2 Practice Quiz10m
Week 2 Quiz12m
Week 2 Lab: Introduction to Data20m
Semana
3
Horas para completar
3 horas para completar

Introduction to Probability

<p>Welcome to Week 3 of Introduction to Probability and Data! Last week we explored numerical and categorical data. This week we will discuss probability, conditional probability, the Bayes’ theorem, and provide a light introduction to Bayesian inference. </p><p>Thank you for your enthusiasm and participation, and have a great week! I’m looking forward to working with you on the rest of this course. </p>...
Reading
9 videos (Total 82 min), 5 readings, 3 quizzes
Video9 videos
Disjoint Events + General Addition Rule9m
Independence9m
Probability Examples9m
(Spotlight) Disjoint vs. Independent2m
Conditional Probability12m
Probability Trees10m
Bayesian Inference14m
Examples of Bayesian Inference7m
Reading5 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Suggested Readings and Practice10m
Week 3 Lab Instructions (RStudio)10m
Week 3 Lab Instructions (DataCamp)10m
Quiz3 ejercicios de práctica
Week 3 Practice Quiz6m
Week 3 Quiz10m
Week 3 Lab: Probability10m
Semana
4
Horas para completar
2 horas para completar

Probability Distributions

<p>Great work so far! Welcome to Week 4 -- the last content week of Introduction to Probability and Data! This week we will introduce two probability distributions: the normal and the binomial distributions in particular. As usual, you can evaluate your knowledge in this week's quiz. There will be <b>no labs</b> for this week. Please don't hesitate to post any questions, discussions and related topics on <a href="https://www.coursera.org/learn/probability-intro/module/VdVNg/discussions?sort=lastActivityAtDesc&page=1" target="_blank"><b>this week's forum</b></a>.</p>...
Reading
6 videos (Total 67 min), 4 readings, 2 quizzes
Video6 videos
Evaluating the Normal Distribution2m
Working with the Normal Distribution5m
Binomial Distribution17m
Normal Approximation to Binomial14m
Working with the Binomial Distribution9m
Reading4 lecturas
Lesson Learning Objectives10m
Lesson Learning Objectives10m
Suggested Readings and Practice10m
Data Analysis Project Example10m
Quiz2 ejercicios de práctica
Week 4 Practice Quiz14m
Week 4 Quiz14m
4.7
581 revisionesChevron Right
Dirección de la carrera

29%

comenzó una nueva carrera después de completar estos cursos
Beneficio de la carrera

83%

consiguió un beneficio tangible en su carrera profesional gracias a este curso
Promoción de la carrera

14%

consiguió un aumento de sueldo o ascenso

Principales revisiones

por AAJan 24th 2018

This course literally taught me a lot, the concepts were beautifully explained but the way it was delivered and overall exercises and the difficulty of problems made it more challenging and enjoying.

por HDMar 31st 2018

The tutor makes it really simple. The given examples really helped to understand the concepts and apply it to a wide range of problems. Thank you for this. Wish I could complete the assignments too.

Instructor

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science

Acerca de Duke University

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

Acerca del programa especializado Statistics with R

In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis. You will produce a portfolio of data analysis projects from the Specialization that demonstrates mastery of statistical data analysis from exploratory analysis to inference to modeling, suitable for applying for statistical analysis or data scientist positions....
Statistics with R

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.