Volver a Python and Statistics for Financial Analysis

4.5

estrellas

714 calificaciones

•

148 revisiones

Course Overview: https://youtu.be/JgFV5qzAYno
Python is now becoming the number 1 programming language for data science. Due to python’s simplicity and high readability, it is gaining its importance in the financial industry. The course combines both python coding and statistical concepts and applies into analyzing financial data, such as stock data.
By the end of the course, you can achieve the following using python:
- Import, pre-process, save and visualize financial data into pandas Dataframe
- Manipulate the existing financial data by generating new variables using multiple columns
- Recall and apply the important statistical concepts (random variable, frequency, distribution, population and sample, confidence interval, linear regression, etc. ) into financial contexts
- Build a trading model using multiple linear regression model
- Evaluate the performance of the trading model using different investment indicators
Jupyter Notebook environment is configured in the course platform for practicing python coding without installing any client applications....

Jul 05, 2019

The videos in this course are exceptional and very interesting. The Jupyter notebooks provide a good template for applying the methods and techniques.

Dec 14, 2019

Great Course. I didn't have a prior background in python programming but this course made it very comfortable. Highly recommend taking this course

Filtrar por:

por Helena K

•Feb 08, 2019

this course is very practical! it explains how statistic concepts can be applied into financial-related examples using python.

some argue the course do not cover enough of python nor financial, nor statistics concepts. hey man !!! this course is not a baby intro course!!! it assumes you are either strong in one/some of the aspects (either you are strong in computer, or stats, or finance), and you want to see how the other aspects can be combined to work out something valuable. do you need to learn everything about a car before driving it? you just learn what you need to get the car moving man!!

This course is not spoon-feeding like your elementary school teachers!!! Professor taught you something, and you are expected to study further on your own. i am not good at stat, but I know programming reasonably well, I know where i should pick up some statistics to understand the materials.

you will be able to find tons of courses that introduces programming language/statistics, but they never tell you how useful the programming language/statistics is in real life. But this course is so practical that I can pick up the knowledge and use immediately.

Highly appreciate professor xu's effort in creating this valuable course!

por Cheuk W K

•Mar 01, 2019

It is a good course overall, combining the basics of statistics, Python and finance. I've learned a lot from it. I think the students can benefit more if additional suggested reading materials can be provided, so that if one lacks a strong background in a particular discipline, one can find out more outside the course. Also will be helpful if slides can be downloaded.

por sabarinathan r

•Feb 07, 2019

This gives a application of all the three famous sectors viz, finance, python and statistics. Actually speaking i am searching for these kind of courses and did not get one. Atlast got this one for my solace. This suited my need. This course cannot be easily designed as other courses . This really needs one time . Thanks to the person who devised the course and also to the instructor Mr. Xuhu Wan for his meticulous time to provide the information in a precise way.

Infact the while explaining errors actually in a very short time he explained the unexplained, explained and total error in a concise and apt way. Really this a wonderful course.

Thanks

Sabarinathan alias Cheryn

por Zeyu H

•Jan 20, 2019

【Now you know Prof. Xuhu Wan, please avoid his course in HKUST】

0. Course Equivalence😐

This course basically covers 50% content of MATH2411 Applied Statistics (I heard there is ISOM2500 that is similar to MATH2411?). Accidentally I took 2411 right before this winter when this course is out, so I found this course quite disappointing because I expect some practical manipulation of Python is covered while it doesn't. More is discussed in #3.

1. Teaching ☹

If you have the experience of recording a video presentation eight hours before the deadline, with scripts written three days before and you hadn't recited or even gone through it in these three days, you will find the professor the same unpassionate. You will find his tone flat enough and gestures unnatural enough as if he is not emphasizing on anything but focusing to recite his scripts. You will find him lag a lot at strange and unnatural spots as if his brain goes blank and he quickly reads the copy of scripts next to the camera.

I thought business people cares a lot about presentation, but I was wrong.

2. Subtitle 😡

There are tons of me steaks in the subtitles, not only tipos but also worlds of cellar pronunciation.

(There are tons of mistakes in the subtitle, not only typos but also words of similar pronunciation.)

I enable subtitle because I sometimes can‘t understand the professor's perfect Mainland accent, but it turns out the subtitle is on his side but not my side.

I thought business people are very strict about the material that comes along with their presentation, that they always carefully spellcheck every sentence. But I was wrong.

3. Content 😐

3.1 Overall:

Please rename this course "Python and applied statistics". The professor spends sooooo much time talking about the statistics concepts and spends soooo little time applying the knowledge to financial analysis. It is not about "Statistics for Financial Analysis". Replace the data he uses for demonstration with GPA of every student and it becomes "Statistics for Being HKUST President" or "Statistics for Anything". I feel I am taking an introduction course to statistics and financial analysis is just an excuse the teacher use to show us the content he teaches is somewhat useful.

3.2 Pace:

You MAY find the pace quite fast because:

The teacher throws many statistics concepts

The teacher cannot fully explain the concepts (or it is not a 4 week course) so he moves on before you ever (perhaps never will) digest the previous concepts

This is extremely annoying in week 4, e.g. Multiple Linear Regression is taught without introducing a single formula, merely Python codes and black boxes behind them. (Actually this is the way I originally expect the professor to do, but it is quite inconsistent with the style in week 1-3)

You MAY find the pace quite slow because:

After all this course introduces formulas and codes and let you to use them without knowing why.

So I would say this is a 4-day course if you can spare 1 hour each day. After all you are not asked "why" but only "how". If you haven't taken MATH2411 or ISOM, you can spend more time on week 2 & 3 to understand the underlying knowledge. Week 1 is simple and week 4 is needless to comprehend.

4. Jupyter Notebook (JN for short) 😡

4.1 Poor Exercise

Almost useless. Just a copy of the codes appeared in the video, with some variables assigned None instead of the correct expression. Your job is to change the lines of variable assignment (usually one or two lines), and the rest is done for you. Some notebooks are even 100% done for you, and all you need to do is look at it and appreciate. Even if you are fiddling with provided exercises, you don't know how to use JN, because...

4.2 Irresponsible adoption of JN

If you want to do some real exercise, you may want to append empty cells below the given content and type codes from scratch. But oh, this course does not teach you how to use JN! It just throw you a tutorial link of how to INSTALL JN ON YOUR COMPUTER{https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook}. What a shame!

Quickly gone through the linked tutorial, it assumes you have installed multiple instance of Python on your desktop, and know basics of pip, conda, docker, and virtual env, and teaches you how to install and configure JN in various dev. environments. But you just mentioned we can use Coursera's pre-installed JN out-of-the-box, why you want us to learn that huh? And to create cells, run cells, run several cells in order, run all, and other basic operations, is hidden in the last seconds of GIFs, not explicitly explained.

I guess the professor is TOO UNRESPONSIBLE to not only teach students how to use JN himself, but also SPEND AT LEAST SOME TIME to check if the external tutorial really "explains how to use Jupyter Notebooks". Please, not every one taking this course is CS student like me, SBM students they may not know how to use Python stuff.

5. Coursera Technical 😐

Quizzes do not provide correct answer. So it is not that helpful. But getting 80% is not that hard either. But given the assumption that you can't use JN (explained in #4.), you lose at least 10% in Quiz 3 and 20% in Quiz 4. Oh that hurts! (Since Notebook 4.4 is done for you, another 20% in Quiz 4 related to JN is okay.)

por Satish N

•Feb 28, 2019

I had only basic knowledge of python and very basic knowledge of statistic - most of which I had not put to use, since leaving school. This course was a helped me to get more confidence with using python in a practical way. In the process I also brushed up my statistical skills - there is no better way to understand statistics then to apply in real-life scenarios as explained in this course. And python packages makes learning fun, by taking off the difficult computation tasks. Overall I would recommend this course to anyone who has interest in learning how to apply statistics and python to analysing data.

por Krzysztof P

•Jun 29, 2019

I have mixed feelings about the course. It shows very practical aspects of building trading stategy in Python, which is still quite unique topic here. It also offers a lot of practice and ready to use and modify solutions delivered as Jupyter notebooks. This course definitely expect you to know a bit about statistics and also to know Python programming, on basic level at least. On the other hand I think the course does not cover the topic deep enough, we've got only some simple linear regression model based on some not-so-creative feature engineering. It does not cover such aspects as HFT vs swing trading strategies, using slipage and transaction costs to evaluate strategy, managing invested capital and many more. I've expected a bit more, to be honest. The course is well done as ready-to-use implementation of very simple concept - but there's nothing more to expect here.

por Kevin L

•Jul 27, 2019

I have no finance background. But i have some extent of programming knowledge. I learn a lot from this course not only finance terms, meaning behind them and how we apply statistic using python to analyze, evaluate and predict market. This course is very pratical thank you Professor Wan!

por Ernani H M J

•Aug 04, 2019

Great course! Very didatic explanations about financial and statistical concepts also with some interesting practical Python for Finance! Looking forward for new courses from same Univ. and prof.!

por TJ D

•Jul 05, 2019

The videos in this course are exceptional and very interesting. The Jupyter notebooks provide a good template for applying the methods and techniques.

por carlo

•Mar 23, 2019

V

e

r

y

w

e

l

l

d

o

n

e

por Ezekiel J T

•Feb 05, 2019

The lecture videos were very helpful to my studies. The teacher was able to explain the materials very clearly. However, I this course doesn't fit my expectations. The reason why is because I wanted to learn how to code in Python. This course emphasizes more on the business side and it doesn't provide an opportunity for us to actually learning the basics of coding in Python. I only learned a few useful terms in Python.

por Tim B

•Dec 01, 2019

Excellent introduction course to use Python and Statistics for stock market data analysis and trading strategies. I really enjoyed the course and it is well organized and set up, it kept me motivated to complete the course. I did not have any prior Python experience but managed to follow the course and you do not need to have Python installed on your computer. I agree that you will definitely get more out of this course if you have prior knowledge of basic statistical concepts. Overall, a fantastic course.

por Shuhong L

•Feb 07, 2019

this is a wonderful course with well-prepared videos to illustrate and well-organised Notebook for practice. the final score you will get is only depended on four quizzes, but it is always useful for you to watch videos carefully and try very best to type codes on Notebook provided for you, which can also benefit your quizzes. you can some basic sentence structure of Python and grasp the practical tool to build a model to make financial inference. with light workload, you can get a lot.

por Sumedh K

•Aug 11, 2019

One of the finest course in this field. I have already done 2 courses on Python and Statistics for Finance and this was the third one. Amongst the three this is easily the easiest to understand and best course for sure. I will look forward to course from this professor or university in the future. Week 3 and Week 4 from the course are like a gold mine for any learner. And the jupyter notebook exercises give just the required practice immediately after the concept is learned.

por Tobias T

•Jan 22, 2019

It is a very good course to learn the basics in python to analyze financial stock market data. However, if you don't have prior knowledge to statistics and financial data (variance, histograms, regressions, value at risk, hypothesis testing, ...), the course might be to fast to understand the background, because you cannot explain all these things properly in 2-3 hours of video. But I guess most people who want to analyze stock data in python have this knowledge.

por Roberto Z

•Jan 13, 2020

A very informative course, getting more intense every week.

The professor goes through the statistics needed to understand end evaluate linear models using stock data and at the end it guides through building a daily prediction for SPY.

The only drawback are that the video might look short, but they are dense, and sometimes the professor use different names for the same concept, leaving you to connect the different names, e.g. Error ≈ Residual.

por Yaron K

•Jan 26, 2019

A short course that shows how to handle time series data, run a multiple linear regression on it, and evaluate the results. This is only an introductory course, and as such it is clear and concise and thus deserving of 5 stars. However it only touches the surface of Python, statistics or trading. As for trading - before risking Real Money - it is strongly advised to learn much more on the subject of stock markets.

por karim a

•Dec 07, 2019

Bonsoir,

vraiment avec une immense joie que je vous écris ce message, merci à toute l'équipe qu'a su faire preuve de professionnalisme, vraiment c'est été un contenu incontournable, qui va m'aider beaucoup de mon travail de recherche, je vous encore une fois pour ce cours et je vais rester fidèle à tous vos cours en ligne.

AMZILE Karim

Rabat,Morocco

+212600652676

por Hei T Y

•Jul 25, 2019

Good course! It demonstrates how python can be applied on financial analysis. Better to have some prior knowledge on python and statistics before taking the course because this course seems to aim at showing the relationship between textbook statistics and python in financial analysis instead of teaching you basic concepts from scratch.

por Karthikeyan V

•Feb 25, 2020

very good. more description of each of the words, atleast definition would be helpful. Use a white board to draw a picture or show something relevant to the words/subject. I don't know, this correct approach or not.

I did not buy the certificate, It cost a lot $50. If it is $5. I would consider.

thank you

por Lorenzo P

•Jul 31, 2019

A complete course about Statistics and Econometrics tools for finance. I appreciated Jupiter notebook that made it very useful and full of practical applications. The level of the course is bachelor's degree. Recommended for whom who have a previous experience with statistics and wish a refresh on it.

por Steve R

•May 06, 2019

Associate Professor Xuhu Wan of HKUST ensures that a student learns both the python programming to build predictive models and the concepts of the models. To build your applied financial analysis skill set, this high caliber course ties together python programming practice with statistics.

por María P S

•Mar 27, 2020

It is a really basic introduction to Financial Analysis using Python. It is easy to do, it just focuses on important commands and indicators. Plus, you won't need to download the Python program in your computer because all the exercises can be done online in Jupyter.

por Chan W W

•Jul 07, 2019

Great fundamental course provided by Prof Xuhu WAN. After finishing the course, I am appreciated that he put lots of good efforts in the training materials. All concepts are delivered with clear examples! Highly recommend to take this course. Thank you very much.

por Giancarlo G

•Jan 27, 2019

Overall, the course was good, but I felt that the course was a bit abrupt in its ending, as I would have wanted to learn about nonlinear regression models, making more trading strategies, and automatic the process using Python.

- IA para todos
- Introducción a TensorFlow
- Redes neurales y aprendizaje profundo
- Algoritmos, parte 1
- Algoritmos, parte 2
- Aprendizaje Automático
- Aprendizaje automático con Python
- Aprendizaje automático con Sas Viya
- Programación R
- Introducción a la programación con Matlab
- Análisis de datos con Python
- Aspectos básicos de AWS: El paso a la nube nativa
- Aspectos básicos de la plataforma en la nube de Google
- Ingeniería de confiabilidad del sitio
- Hablar inglés de manera profesional
- La ciencia del bienestar
- Aprendiendo a aprender
- Mercados financieros
- Prueba de hipótesis en el área de la salud pública
- Aspectos básicos del liderazgo diario

- Aprendizaje profundo
- Python para todos
- Ciencia de Datos
- Ciencias de los Datos Aplicada con Python
- Aspectos básicos de los negocios
- Arquitectura con Google Cloud Platform
- Ingeniería de datos en la plataforma en la nube de Google
- Excel para MySQL
- Aprendizaje automático avanzado
- Matemática aplicada al aprendizaje automático
- Automóviles de auto conducción
- Revolución de la cadena de bloques para la empresa
- Análisis comercial
- Habilidades de Excel aplicadas para los negocios
- mercadeo digital
- Análisis estadístico con R para el área de la salud pública
- Aspectos básicos de la inmunología
- Anatomía
- Gestión de la innovación y del pensamiento de diseño
- Aspectos básicos de la psicología positiva

- Soporte de TI de Google
- Especialista en compromiso con el cliente de IBM
- Ciencia de datos de IBM
- Administrador de proyectos aplicado
- Certificado profesional de IA aplicada de IBM
- Aprendizaje automático para análisis
- Análisis y visualización de datos espaciales
- Gestión e ingeniería de construcción
- Diseño instruccional

- Maestría en Ciencia de Datos
- Licenciatura en Ciencias de la Computación
- Títulos de Ciencias de la Computación e Ingeniería
- Maestría en Aprendizaje Automático
- Maestría en Administración de Empresas y títulos de estudios de negocios
- Maestría en Ingeniería Eléctrica
- Maestría en Salud Pública
- Maestría en Tecnología de la Información