Acerca de este Curso

30,394 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Curso 5 de 6 en
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 12 horas para completar
Inglés (English)
Subtítulos: Inglés (English)
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Curso 5 de 6 en
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 12 horas para completar
Inglés (English)
Subtítulos: Inglés (English)

ofrecido por

Placeholder

IBM

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

4 horas para completar

Introduction

4 horas para completar
4 videos (Total 24 minutos), 1 lectura, 4 cuestionarios
4 videos
Introduction to TensorFlow7m
Introduction to Deep Learning2m
Deep Neural Networks11m
1 lectura
Syllabus10m
1 ejercicio de práctica
Deep Neural Networks and TensorFlow30m
Semana
2

Semana 2

2 horas para completar

Supervised Learning Models

2 horas para completar
3 videos (Total 22 minutos)
3 videos
Convolutional Neural Networks (CNNs) for Classification4m
Convolutional Neural Networks (CNNs) Architecture13m
1 ejercicio de práctica
Convolutional Neural Networks30m
Semana
3

Semana 3

3 horas para completar

Supervised Learning Models (Cont'd)

3 horas para completar
4 videos (Total 22 minutos)
4 videos
Recurrent Neural Networks (RNNs)5m
The Long Short Term Memory (LSTM) Model5m
Language Modelling7m
1 ejercicio de práctica
Recurrent Neural Networks30m
Semana
4

Semana 4

2 horas para completar

Unsupervised Deep Learning Models

2 horas para completar
2 videos (Total 10 minutos)
2 videos
Restricted Boltzmann Machines (RBMs)5m
1 ejercicio de práctica
Restricted Boltzmann Machines30m

Reseñas

Principales reseñas sobre BUILDING DEEP LEARNING MODELS WITH TENSORFLOW

Ver todas las reseñas

Acerca de Certificado profesional de IBM AI Engineering

Artificial intelligence (AI) is revolutionizing entire industries, changing the way companies across sectors leverage data to make decisions. To stay competitive, organizations need qualified AI engineers who use cutting-edge methods like machine learning algorithms and deep learning neural networks to provide data driven actionable intelligence for their businesses. This 6-course Professional Certificate is designed to equip you with the tools you need to succeed in your career as an AI or ML engineer. You’ll master fundamental concepts of machine learning and deep learning, including supervised and unsupervised learning, using programming languages like Python. You’ll apply popular machine learning and deep learning libraries such as SciPy, ScikitLearn, Keras, PyTorch, and Tensorflow to industry problems involving object recognition, computer vision, image and video processing, text analytics, natural language processing (NLP), recommender systems, and other types of classifiers. Through hands-on projects, you’ll gain essential data science skills scaling machine learning algorithms on big data using Apache Spark. You’ll build, train, and deploy different types of deep architectures, including convolutional neural networks, recurrent networks, and autoencoders. In addition to earning a Professional Certificate from Coursera, you will also receive a digital badge from IBM recognizing your proficiency in AI engineering....
IBM AI Engineering

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.