In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio.
Ofrecido Por
Acerca de este Curso
¿Podría tu empresa beneficiarse de la capacitación de los empleados en las habilidades más demandadas?
Prueba Coursera para negociosQué aprenderás
Set up R, R-Studio, Github and other useful tools
Understand the data, problems, and tools that data analysts use
Explain essential study design concepts
Create a Github repository
Habilidades que obtendrás
- Data Science
- Github
- R Programming
- Rstudio
¿Podría tu empresa beneficiarse de la capacitación de los empleados en las habilidades más demandadas?
Prueba Coursera para negociosOfrecido por
Programa - Qué aprenderás en este curso
Data Science Fundamentals
R and RStudio
Version Control and GitHub
R Markdown, Scientific Thinking, and Big Data
Reseñas
- 5 stars69,47 %
- 4 stars23,24 %
- 3 stars5,26 %
- 2 stars1,09 %
- 1 star0,91 %
Aspectos destacados
Principales reseñas sobre LA CAJA DE HERRAMIENTAS DEL CIENTÍFICO DE DATOS
A good basic class and collection of the tools. I wish there had been a little more explanation of what we would use the software for, but I found the lecture parts to be both concise and informative.
Yeah, the robot voice is annoying. There needs to be better instruction on getting R Markdown to work. I tried in vain and gave up on it after looking at multiple forums with my same issue. Oh well.
This course was a good intro especially in setting all the necessary software for future courses. I suggest to read the manuals, books and other readings the profs suggest. The resources are helpful.
It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.
Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
¿Hay ayuda económica disponible?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.