Acerca de este Programa Especializado
309,202 vistas recientes

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel principiante

You should have beginner level experience in Python. Familarity with regression is recommended.

Aprox. 8 meses para completar

Sugerido 5 horas/semana

Inglés (English)

Subtítulos: Inglés (English), Árabe (Arabic), Francés (French), Chino (simplificado), Griego, Italiano, Portugués (de Brasil), Vietnamita, Ruso (Russian), Turco (Turkish), Hebreo, Japonés...

Qué aprenderás

  • Check

    Use R to clean, analyze, and visualize data.

  • Check

    Navigate the entire data science pipeline from data acquisition to publication.

  • Check

    Use GitHub to manage data science projects.

  • Check

    Perform regression analysis, least squares and inference using regression models.

Habilidades que obtendrás

GithubMachine LearningR ProgrammingRegression Analysis

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel principiante

You should have beginner level experience in Python. Familarity with regression is recommended.

Aprox. 8 meses para completar

Sugerido 5 horas/semana

Inglés (English)

Subtítulos: Inglés (English), Árabe (Arabic), Francés (French), Chino (simplificado), Griego, Italiano, Portugués (de Brasil), Vietnamita, Ruso (Russian), Turco (Turkish), Hebreo, Japonés...

Cómo funciona Programa Especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 10 cursos en este Programa Especializado

Curso1

The Data Scientist’s Toolbox

4.5
19,312 calificaciones
3,869 revisiones

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio.

...
Curso2

Programación R

4.6
14,238 calificaciones
2,914 revisiones

In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples.

...
Curso3

Getting and Cleaning Data

4.6
6,070 calificaciones
944 revisiones

Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data.

...
Curso4

análisis exploratorio de datos

4.7
4,619 calificaciones
658 revisiones

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

...
Curso5

Reproducible Research

4.5
3,205 calificaciones
455 revisiones

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results.

...
Curso6

Inferencia estadística

4.2
3,233 calificaciones
637 revisiones

Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance. This course presents the fundamentals of inference in a practical approach for getting things done. After taking this course, students will understand the broad directions of statistical inference and use this information for making informed choices in analyzing data.

...
Curso7

Regression Models

4.4
2,582 calificaciones
441 revisiones

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing.

...
Curso8

Practical Machine Learning

4.5
2,489 calificaciones
469 revisiones

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.

...
Curso9

Developing Data Products

4.5
1,725 calificaciones
328 revisiones

A data product is the production output from a statistical analysis. Data products automate complex analysis tasks or use technology to expand the utility of a data informed model, algorithm or inference. This course covers the basics of creating data products using Shiny, R packages, and interactive graphics. The course will focus on the statistical fundamentals of creating a data product that can be used to tell a story about data to a mass audience.

...
Curso10

Data Science Capstone

4.5
833 calificaciones
221 revisiones

The capstone project class will allow students to create a usable/public data product that can be used to show your skills to potential employers. Projects will be drawn from real-world problems and will be conducted with industry, government, and academic partners.

...

Instructores

Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Socios del sector

Industry Partner Logo #0
Industry Partner Logo #1

Acerca de Universidad Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Each course in the Specialization is offered monthly.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • Begin by taking The Data Scientist's Toolbox and Introduction to R Programming, in order. The other courses may be taken in any order, and in parallel if desired.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You’ll have a foundational understanding of the field and be prepared to continue studying data science.

  • Yes, you can access the course for free via www.coursera.org/jhu. This will allow you to explore the course, watch lectures, and participate in discussions for free. To be eligible to earn a certificate, you must either pay for enrollment or qualify for financial aid.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.