Sobre este programa especializado

Ask the right questions, manipulate data sets, and create visualizations to communicate results.

This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material.

...
Globe

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Calendar

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Beginner Level

Nivel principiante

You should have beginner level experience in Python. Familarity with regression is recommended.
Clock

Aprox. 9 meses para completar

Sugerido 5 horas/semana
Comment Dots

English

Subtítulos: English, French, Chinese (Simplified), Greek, Italian, Portuguese (Brazilian), Vietnamese, Russian, Turkish, Hebrew, Japanese

Qué aprenderás

  • Check
    Build models based on new data types, experimental design, and statistical inference
  • Check
    Create products that can be used to tell stories about data to a mass audience
  • Check
    Formulate context-relevant questions and hypotheses to drive data scientific research
  • Check
    Utilize tools that transform and interpret large-scale datasets

Habilidades que obtendrás

GithubMachine LearningR ProgrammingRegression Analysis
Globe

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Calendar

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Beginner Level

Nivel principiante

You should have beginner level experience in Python. Familarity with regression is recommended.
Clock

Aprox. 9 meses para completar

Sugerido 5 horas/semana
Comment Dots

English

Subtítulos: English, French, Chinese (Simplified), Greek, Italian, Portuguese (Brazilian), Vietnamese, Russian, Turkish, Hebrew, Japanese

Cómo funciona el programa especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 10 cursos en este Programa Especializado

1Curso

The Data Scientist’s Toolbox

4.5
16,366 calificaciones
3,378 revisiones
In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
2Curso

R Programming

4.6
12,282 calificaciones
2,592 revisiones
In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples....
3Curso

Getting and Cleaning Data

4.6
5,249 calificaciones
840 revisiones
Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data....
4Curso

Exploratory Data Analysis

4.7
4,020 calificaciones
598 revisiones
This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data....

Instructores

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Socios del sector

Industry Partner Logo #0
Industry Partner Logo #1

Acerca de Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Preguntas Frecuentes

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Each course in the Specialization is offered monthly.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • Begin by taking The Data Scientist's Toolbox and Introduction to R Programming, in order. The other courses may be taken in any order, and in parallel if desired.

  • You’ll have a foundational understanding of the field and be prepared to continue studying data science.

  • Yes, you can access the course for free via www.coursera.org/jhu. This will allow you to explore the course, watch lectures, and participate in discussions for free. To be eligible to earn a certificate, you must either pay for enrollment or qualify for financial aid.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.