Acerca de este Curso
4.4
2,507 calificaciones
432 revisiones

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 17 horas para completar

Inglés (English)

Subtítulos: Inglés (English), Vietnamita

Qué aprenderás

  • Check

    Describe novel uses of regression models such as scatterplot smoothing

  • Check

    Investigate analysis of residuals and variability

  • Check

    Understand ANOVA and ANCOVA model cases

  • Check

    Use regression analysis, least squares and inference

Habilidades que obtendrás

Model SelectionGeneralized Linear ModelLinear RegressionRegression Analysis

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 17 horas para completar

Inglés (English)

Subtítulos: Inglés (English), Vietnamita

Programa - Qué aprenderás en este curso

Semana
1
12 horas para completar

Week 1: Least Squares and Linear Regression

This week, we focus on least squares and linear regression....
9 videos (Total 74 minutos), 11 readings, 4 quizzes
9 videos
Introduction: Basic Least Squares6m
Technical Details (Skip if you'd like)2m
Introductory Data Example12m
Notation and Background7m
Linear Least Squares6m
Linear Least Squares Coding Example7m
Technical Details (Skip if you'd like)11m
Regression to the Mean11m
11 lecturas
Welcome to Regression Models10m
Book: Regression Models for Data Science in R10m
Syllabus10m
Pre-Course Survey10m
Data Science Specialization Community Site10m
Where to get more advanced material10m
Regression10m
Technical details10m
Least squares10m
Regression to the mean10m
Practical R Exercises in swirl Part 110m
1 ejercicio de práctica
Quiz 120m
Semana
2
11 horas para completar

Week 2: Linear Regression & Multivariable Regression

This week, we will work through the remainder of linear regression and then turn to the first part of multivariable regression....
10 videos (Total 70 minutos), 5 readings, 4 quizzes
10 videos
Interpreting Coefficients3m
Linear Regression for Prediction10m
Residuals5m
Residuals, Coding Example14m
Residual Variance7m
Inference in Regression5m
Coding Example6m
Prediction9m
Really, really quick intro to knitr3m
5 lecturas
*Statistical* linear regression models10m
Residuals10m
Inference in regression10m
Looking ahead to the project10m
Practical R Exercises in swirl Part 210m
1 ejercicio de práctica
Quiz 220m
Semana
3
13 horas para completar

Week 3: Multivariable Regression, Residuals, & Diagnostics

This week, we'll build on last week's introduction to multivariable regression with some examples and then cover residuals, diagnostics, variance inflation, and model comparison. ...
14 videos (Total 168 minutos), 5 readings, 5 quizzes
14 videos
Multivariable Regression part II10m
Multivariable Regression Continued8m
Multivariable Regression Examples part I19m
Multivariable Regression Examples part II22m
Multivariable Regression Examples part III7m
Multivariable Regression Examples part IV7m
Adjustment Examples17m
Residuals and Diagnostics part I5m
Residuals and Diagnostics part II9m
Residuals and Diagnostics part III9m
Model Selection part I7m
Model Selection part II22m
Model Selection part III12m
5 lecturas
Multivariable regression10m
Adjustment10m
Residuals10m
Model selection10m
Practical R Exercises in swirl Part 310m
2 ejercicios de práctica
Quiz 314m
(OPTIONAL) Data analysis practice with immediate feedback (NEW! 10/18/2017)8m
Semana
4
17 horas para completar

Week 4: Logistic Regression and Poisson Regression

This week, we will work on generalized linear models, including binary outcomes and Poisson regression. ...
7 videos (Total 95 minutos), 6 readings, 6 quizzes
7 videos
GLMs21m
Logistic Regression part I17m
Logistic Regression part II3m
Logistic Regression part III8m
Poisson Regression part I12m
Poisson Regression part II12m
Hodgepodge18m
6 lecturas
GLMs10m
Logistic regression10m
Count Data10m
Mishmash10m
Practical R Exercises in swirl Part 410m
Post-Course Survey10m
1 ejercicio de práctica
Quiz 412m
4.4
432 revisionesChevron Right

23%

comenzó una nueva carrera después de completar estos cursos

27%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

12%

consiguió un aumento de sueldo o ascenso

Principales revisiones

por MMMar 13th 2018

Great course, very informative, with lots of valuable information and examples. Prof. Caffo and his team did a very good job in my opinion. I've found very useful the course material shared on github.

por KADec 17th 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

Instructores

Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health

Acerca de Universidad Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Acerca del programa especializado Ciencia de Datos

Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material....
Ciencia de Datos

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.