Acerca de este Curso
4.8
10,108 calificaciones
1,182 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 18 horas para completar

Sugerido: 10 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Chino (simplificado)

Habilidades que obtendrás

Recurrent Neural NetworkArtificial Neural NetworkDeep LearningLong Short-Term Memory (ISTM)
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 18 horas para completar

Sugerido: 10 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English), Chino (simplificado)

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
6 horas para completar

Recurrent Neural Networks

Learn about recurrent neural networks. This type of model has been proven to perform extremely well on temporal data. It has several variants including LSTMs, GRUs and Bidirectional RNNs, which you are going to learn about in this section....
Reading
12 videos (Total 112 minutos), 4 quizzes
Video12 videos
Notation9m
Recurrent Neural Network Model16m
Backpropagation through time6m
Different types of RNNs9m
Language model and sequence generation12m
Sampling novel sequences8m
Vanishing gradients with RNNs6m
Gated Recurrent Unit (GRU)17m
Long Short Term Memory (LSTM)9m
Bidirectional RNN8m
Deep RNNs5m
Quiz1 ejercicio de práctica
Recurrent Neural Networks20m
Semana
2
Horas para completar
4 horas para completar

Natural Language Processing & Word Embeddings

Natural language processing with deep learning is an important combination. Using word vector representations and embedding layers you can train recurrent neural networks with outstanding performances in a wide variety of industries. Examples of applications are sentiment analysis, named entity recognition and machine translation....
Reading
10 videos (Total 102 minutos), 3 quizzes
Video10 videos
Using word embeddings9m
Properties of word embeddings11m
Embedding matrix5m
Learning word embeddings10m
Word2Vec12m
Negative Sampling11m
GloVe word vectors11m
Sentiment Classification7m
Debiasing word embeddings11m
Quiz1 ejercicio de práctica
Natural Language Processing & Word Embeddings20m
Semana
3
Horas para completar
5 horas para completar

Sequence models & Attention mechanism

Sequence models can be augmented using an attention mechanism. This algorithm will help your model understand where it should focus its attention given a sequence of inputs. This week, you will also learn about speech recognition and how to deal with audio data....
Reading
11 videos (Total 103 minutos), 3 quizzes
Video11 videos
Picking the most likely sentence8m
Beam Search11m
Refinements to Beam Search11m
Error analysis in beam search9m
Bleu Score (optional)16m
Attention Model Intuition9m
Attention Model12m
Speech recognition8m
Trigger Word Detection5m
Conclusion and thank you2m
Quiz1 ejercicio de práctica
Sequence models & Attention mechanism20m
4.8
1,182 revisionesChevron Right
Dirección de la carrera

44%

comenzó una nueva carrera después de completar estos cursos
Beneficio de la carrera

40%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones

por WKMar 14th 2018

I was really happy because I could learn deep learning from Andrew Ng.\n\nThe lectures were fantastic and amazing.\n\nI was able to catch really important concepts of sequence models.\n\nThanks a lot!

por JYOct 30th 2018

The lectures covers lots of SOTA deep learning algorithms and the lectures are well-designed and easy to understand. The programming assignment is really good to enhance the understanding of lectures.

Instructores

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai

Acerca de deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Acerca del programa especializado Deep Learning

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Deep Learning

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.